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ABSTRACT

Despite significant advances in deep learning based object detec-
tion in recent years, training effective detectors in a small data
regime remains an open challenge. This is very important since la-
belling training data for object detection is often very expensive and
time-consuming. In this paper, we investigate the problem of few-
shot object detection, where a detector has access to only limited
amounts of annotated data. Based on the meta-learning principle,
we propose a new meta-learning framework for object detection
named “Meta-RCNN", which learns the ability to perform few-shot
detection via meta-learning. Specifically, Meta-RCNN learns an
object detector in an episodic learning paradigm on the (meta)
training data. This learning scheme helps acquire a prior which
enables Meta-RCNN to do few-shot detection on novel tasks. Built
on top of the popular Faster RCNN detector, in Meta-RCNN, both
the Region Proposal Network (RPN) and the object classification
branch are meta-learned. The meta-trained RPN learns to provide
class-specific proposals, while the object classifier learns to do few-
shot classification. The novel loss objectives and learning strategy
of Meta-RCNN can be trained in an end-to-end manner. We demon-
strate the effectiveness of Meta-RCNN in few-shot detection on
three datasets (Pascal-VOC, ImageNet-LOC and MSCOCO) with
promising results.
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1 INTRODUCTION

Object detection is the task of identifying various objects in a given
image and localizing them with a bounding box, which is widely
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studied in computer vision. Following the success of deep learning
for image classification [11, 12], recent years have witnessed re-
markable progress in object detection with deep learning. A series
of detection algorithms based on deep learning have been proposed
which achieve state-of-the-art results on public detection bench-
mark datasets [7, 8, 14–16, 19, 21]. However, all these methods are
data hungry, and require large amounts of annotated data to learn
an immense number of parameters. For object detection, annotating
the data is very expensive (far more than image classification), as it
requires not only identifying the categorical labels for every object
in the image, but also providing accurate localization information
through bounding box coordinates. Moreover, in some applications,
such as medical research, it’s often impossible to even collect suffi-
cient data to annotate. This warrants a need for effective detectors
that can generalize well from small amounts of annotated data. We
refer to the problem of learning detectors from limited labeled data
as few-shot detection. For example, in one-shot detection, only one
image is available with objects of interest annotated, and a detector
needs to train on just this image and generalize. When presented
with such small amounts of annotated data, traditional detectors
tend to suffer from overfitting. Inspired by the fact that humans can
learn a new concept from limited training data, we aim to develop
a new few-shot detection method.

Recent years have seen active efforts for few-shot learning [6, 24,
26]. A promising direction among the emerging studies is to follow
the principle of meta learning, where a set of tasks in a few-shot
setting is simulated from a large corpus of annotated data, and the
model is optimized to perform well over these few shot tasks. This
trains the model to learn how to solve few-shot tasks. However,
most existing efforts of meta learning are mainly focused on clas-
sification. Adapting few-shot classification algorithms directly for
few-shot detection (e.g. by replacing the region classification branch
of detector with a meta-learner) is non-trivial because of two major
challenges. The first challenge is that the detection algorithms not
only require classifying objects correctly, but also need to localize
objects precisely in cluttered backgrounds using a Region Proposal
Network (RPN) and bounding box (bbox) regressors. Thus, both
RPN and bbox regressors should be capable enough to adapt to
few-shot settings. The second challenge is that in a given few-shot
task with one (or few) annotated image(s), the annotated image
may contain objects from several classes, but only a few objects of
interest are annotated. A few-shot detector should detect only the
objects of interest. Unfortunately, a naively trained meta-detector’s
RPN would detect all objects (even objects from classes not of inter-
est) and try to classify them as one of the classes of interest rather
than background images (See Figure 1 for an example).

We aim to address these challenges in few-shot object detection
by proposing a novel method using the meta-learning paradigm. In
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Figure 1: Few-shot object detection in the meta-learning setting. From the meta-train dataset, a 𝐾way-𝑁 shot support set and

a query set are sampled to create a task. The meta detector makes predictions on the query set by using the prior knowledge

learned from the support set, and updates the detector based on the training loss on the query set. In this example, despite

many objects (“person", “dog", “truck", etc), the meta-train sample task aims to just detect “person". At test time, a single

annotated image from a novel class (e.g., “bear") is available for the detector to learn a model that can generalize.

particular, we propose Meta-RCNN, an end to end trainable meta
object detector, which follows the episodic learning paradigm of
meta-learning [26], where multiple few-shot tasks are simulated
based on a given meta-train dataset. Specifically, for a given task,
we first construct a class prototype for each of the annotated object
categories in the support set, where the prototype is a feature
map representing the class. Using these prototypes, a class-specific
feature map of the entire image is constructed, i.e., we obtain a
class-specific feature map of the entire image for each of the class
prototypes. This means that each feature map is tailored to detect
only objects of the class of the prototype, by giving higher attention
to appropriate regions in the image containing that object. This is
followed by a Region-Proposal Network (RPN), weight-shared by
all classes, to generate proposals. We aim to generate class-specific
proposals by applying the RPN to class-specific feature maps. Each
region proposal is then fed to a binary classifier (to determine if it is
an object of the specific class or not) and a bounding box regressor
to predict the location of the object.

Meta-RCNN learns a few-shot detector where the whole frame-
work can be trained via meta-learning in an end-to-end manner.
In contrast to the naive adaptation of meta-learning for classifica-
tion into an object detection framework, Meta-RCNN meta-learns
the few-shot classifier, the RPN, and the bbox regressor, thus mak-
ing all three components suitable for handling few-shot scenarios.
Moreover, Meta-RCNN learns a class-specific feature map for a
given class prototype enabling easier distinction between classes of
interest and backgrounds (where other objects in the image from
classes not of interest are considered as backgrounds). We demon-
strate the effectiveness of Meta-RCNN on two few-shot detection

benchmarks: Pascal-VOC and ImageNet-LOC, and achieve promis-
ing results under different few-shot settings. Our key contributions
in this work include:

• We propose a novel meta-learning based framework for few-
shot object detection tasks, which is able to learn the ability
to perform few-shot detection (both proposal generation and
object classification) in an episodic learning paradigm.

• Based on our meta-learning framework, we propose a new
few-shot object detection algorithm “Meta-RCNN" that ex-
tends the popular Faster-RCNN under the few-shot setting.

• We evaluate the performance of Meta-RCNN on two few-
shot object detection benchmarks and the promising results
validate the effectiveness of the proposed method.

The rest is organized as follow. Section 2 introduces some pre-
liminaries and overviews object detection tasks under few-shot
detection settings. Section 3 presents the proposed Meta-RCNN
method. Section 4 discusses our experimental results. Section 5 re-
views related work in object detection, meta learning and few-shot
object detection. Finally Section 6 concludes this work.

2 PRELIMINARIES

2.1 Problem Setting

Wepresent the formal problem setting of a few-shot object detection
task in this paper. Consider two object detection datasets D and T .
D is a large-scale image dataset with annotated objects from |𝐶𝐷 |
categories, and T is a small target dataset with images that contains
annotated objects from |𝐶𝑇 | target categories. There is no category
overlap between the two datasets: 𝐶𝐷 ∩ 𝐶𝑇 = 𝜙 . Our goal is to
learn an object detector from the annotated data from D and T



to detect the target categories of objects for any unlabeled/unseen
image in T . When the number of annotated objects in T is very
small (e.g. 1 object is annotated per category), it becomes a few-shot
detection task. In this paper, we investigate how to address this
problem setting, by training a model that acquires the ability to
quickly adapt to a novel few-shot detection task

We adopt the meta learning principle for few-shot object detec-
tion tasks. Meta-learning, also known as “learning to learn", aims
to devise models that can learn new abilities or adapt to new en-
vironments rapidly with a few training examples. We follow the
standard paradigm of meta learning with two stages: meta-training
and meta-test. During the meta-training stage, the model is opti-
mized through sampling mini-batches called “episodes" for training,
where each episode is created to mimic the few-shot learning task
by subsampling both categories and samples.

Specifically, during meta-training, few-shot detection tasks are
sampled from the annotated dataset D, in which each task consists
of a support set 𝑆 and a query set 𝑄 , where the support set mimics
the few-shot annotated training data, and the query set mimics the
test data for this task. More formally, consider a few-shot simulation
with an 𝐾-Way and 𝑁 -shot setting, for the 𝑖-th task, a support set
𝑆𝐷
𝑖

is created by randomly sampling a subset of images from D
with 𝐾 ways (namely 𝐾 categories from 𝐶𝐷 ) and 𝑁 shots (namely
𝑁 images per category). During the same episode, a query set𝑄𝐷

𝑖
is

created by randomly sampling a subset of images from D with the
same 𝐾 ways (namely the same 𝐾 categories from𝐶𝐷 ) but different
𝑁𝑄 shots (different 𝑁𝑄 images per category). The pair of 𝑆𝐷

𝑖
and

𝑄𝐷
𝑖

is used as a few-shot task sample for training the model:

D𝑖 =

{
𝑆𝐷𝑖 , 𝑄

𝐷
𝑖

}
⊂ D (1)

During the meta-test stage, following the similar 𝐾-way and
𝑁 -shot sampling approach, a pair of query and support subsets can
be sampled from T for performance evaluation:

T𝑖 =
{
𝑆𝑇𝑖 , 𝑄

𝑇
𝑖

}
⊂ T (2)

where 𝑆𝑇
𝑖
is a support set and 𝑄𝑇

𝑖
is a query set that serves as

the ground-truth test set for evaluation. After adapting the model
learned from the meta-training stage rapidly on the support set 𝑆𝑇

𝑖
,

we can test the performance of the resulting model by evaluating
the prediction results on the query set 𝑄𝑇

𝑖
. These performance

evaluation results are averaged across multiple few-shot tasks to
evaluate the expected performance of the meta-trained few-shot
detector over a variety of novel few-shot detection tasks.

2.2 Overview of Faster RCNN

In this paper, we extend the popular Faster RCNN algorithm [21]
as our base model for few-shot detection tasks.

Faster RCNN consists of two components, an RPN (Region Pro-
posal Network) for proposal generation and Fast RCNN for region
classification as well as bounding box regression. RPN generates
a sparse set of proposals from an input image. In particular, RPN
extracts a feature vector from each region by scanning the whole
image using sliding windows, followed by a binary classifier (ob-
jects vs backgrounds) and a bounding box regressor, where easy
negatives are filtered. For each proposal, a fixed-length feature vec-
tor is extracted using ROI Pooling layers, which is then fed into a

sequence of dense connected layers branching into two outputs:
1) classification: softmax probability over 𝐾 + 1 classes (𝐾 target
classes plus a background class), and 2) regression: four real-values
for refining bounding box position.

Specifically, we denote by 𝑢 the category label, 𝑣 the ground
truth bounding box, 𝑝 the predicted probability distribution over C
classes, 𝑡𝑢 the predicted bounding box prediction of class 𝑢, and 𝜆
as the trade-off parameter. 𝐿cls represents softmax loss and 𝐿loc rep-
resents SmoothL1 loss function for localization. The entire network
can be optimized end-to-end by minimizing loss 𝐿(𝑝,𝑢, 𝑡𝑢 , 𝑣):

𝐿(𝑝,𝑢, 𝑡𝑢 , 𝑣) = 𝐿cls (𝑝,𝑢) + 𝜆[𝑢 ≥ 1]𝐿loc (𝑡𝑢 , 𝑣), (3)

However, this framework requires a lot of training samples to
obtain a good performance. In the next section, we present the
proposed Meta-RCNN which builds over Faster RCNN and is specif-
ically designed to address few-shot detection.

3 META-RCNN

3.1 Overview

We now present our proposed method Meta-RCNN for few-shot de-
tection (See Figure 2 for an overview). Meta-RCNN is trained with
multiple few-shot tasks simulated from the meta-train dataset. For
each episode, a few object categories of interest are assumed to be
annotated (Support set). During meta-training, a prototype is com-
puted for each object category. The prototype is simply the mean
vectors of features of all the annotated objects from that category.
For a given query image, for each of these category prototypes, a
class-specific feature map is generated by using a class-attention
module which combines the prototype information with the fea-
ture map of the entire image. This feature map only highlights the
signals of the class of interest, and suppresses information from
other classes. This is followed by an RPN, which aims to generate
proposals from the class-specific feature maps. This is followed by
a binary classifier to predict if the object belongs to the specific
category or not, and a bounding box prediction. Based on these
predictions and the ground truth of the query images, a loss is
computed and is used to update the model.

Meta-RCNN is a general paradigm to train few-shot detector via
meta-learning. For each task, irrelevant categories and background
can be filtered by an attention module, and the final generated
feature map learns a general representation for the given few-shot
detection task. Compared with [22] and [28], our Meta-RCNN is
more general as the whole framework can be optimized end-to-end
under the meta-learning paradigm, including RPN, the classifier
and the bounding box regressor. Since all the components are meta-
trained, each of them is suitable for few-shot learning. Next, we
present the details of the model.

3.2 Meta-Training

Following the Meta-Training paradigm introduced previously, mul-
tiple 𝐾way-𝑁 shot tasks are simulated from the large annotated
dataset D. To fit the memory size during the Meta-Training stage,
we meta-train the model by adopting the setting of 2way-5shot
tasks, in which 10 support images are sampled for 𝑆𝐷

𝑖
(1 support

image per class) and 1 image sampled to form the query set 𝑄𝐷
𝑖
,

which results in only a total of 11 images for each task 𝐷𝑖 .
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Figure 2: The Meta-RCNN workflow. We extract a set of prototypes (“prior") of different categories from the support set. For

each class, conditioned on these prototypes, a class-specific feature map from the query set is generated by applying the class-

aware attention module to the feature map of the entire image. The new class-specific feature map is tailored to detect objects

of that specific class (e.g., class ’person’ in the example). A weight-shared RPN is applied on the class-specific feature map,

followed with a binary region classification layer and a bounding box regressor. The whole network is trained end-to-end.

3.2.1 Learning Prior from Support Set via Prototypical Networks.
For meta-learning, a critical step is to learn prior from the support
set, which can facilitate the subsequent training on the query set.
In our approach, we adapt the idea of Prototypical Networks (PN)
[24] to learn prior (namely “prototypes") from the support set.

Specifically, consider an episodic task 𝐷𝑖 , the images from the
support set 𝑆𝐷

𝑖
are fed into the Faster RCNN to generate the region

features of objects belonging to the 𝐾 selected categories. For each
class 𝑐𝑘 from the 𝐾 object categories of interest, a prototype 𝑃𝑘 is
computed as the mean vector of the corresponding region features
of objects belonging to the class 𝑐𝑘 , namely

𝑃𝑘 =
1
𝑁𝑘

𝑁𝑘∑
𝑗=1

𝑟𝑐 (𝑥 𝑗 ) (4)

where 𝑃𝑘 denotes prototype of class 𝑐𝑘 , 𝑟𝑐 (𝑥 𝑗 ) denotes the 𝑗-th
region features of an object 𝑥 𝑗 from class 𝑐𝑘 , and 𝑁𝑘 denotes the
total number of objects belonging to 𝑐𝑘 in current support set.

3.2.2 Class-aware Attention Map. Based on the above prototypes,
the images from the query set 𝑄𝐷

𝑖
are fed into the same Faster

RCNN model to obtain the image feature map before RPN and ROI
Pooling. For each category, a class-specific feature map is learned
based on the input query image and its corresponding prototype.
We employ a learnable class-aware attention module, with the aim
to highlight the signals of target class and suppress the signals
of other categories. The class-aware attention module is based on
basic channel-wise multiplication. The prototype 𝑃𝑘 for a class 𝑐𝑘 is
encoded by a Fully-Connected (FC) layer 𝜙 , which is later combined
with feature map 𝑓 by element-wise multiplication:

𝐹𝑘 = 𝑓 ⊙ 𝜙 (𝑃𝑘 ) (5)
Thus, one new feature map 𝐹𝑘 is generated for each category 𝑐𝑘
to highlight the objects belonging to the class 𝑐𝑘 . Based on the
new feature map 𝐹𝑘 , a weight-shared RPN is followed to produce
region proposals. In order to recover the information lost in the

class attention module, we generate a new feature map by concate-
nating original map with class-specific map and finally learn the
region features on the new feature map by cropping the region
features. To further enhance the representation of region proposals,
we attach the prototype with the region feature 𝑟 by element-wise
multiplication:

𝑅𝑐 = 𝑟 ⊙ 𝜙 (𝑃𝑘 ) (6)
Furthermore, we apply margin loss between positive and negative
samples to enhance the feature representation.

3.2.3 Overall Training Loss on the Query Set. Finally, we need to
train the detector on the query set based on the class-aware feature
maps learned from the support set. Specifically, a binary region
classifier and a bbox regressor together with the RPN are jointly
optimized w.r.t the query set 𝑄𝐷

𝑖
as follows:

𝐿(𝑄𝐷
𝑖 ; 𝑆𝐷𝑖 , 𝜃 ) =

∑
(𝑥,𝑦,𝑏) ∈𝑄𝐷

𝑖

𝐿loc
(
𝑏 (𝑥), 𝑏

)
+ 𝐿cls

(
𝑦 (𝑥), 𝑦

)
+ 𝐿RPN

(7)
where (𝑥,𝑦, 𝑏) denotes the object features, class label and bound-

ing box respectively, and 𝜃 represents the parameters of Meta-
RCNN. Notably, the number of negative training samples increases
significantly in our framework, and thus we use hard negative
mining strategy to train the model.

3.3 Meta-Test

During the meta-test stage, we have two settings: (i) multiple
episodic prediction; (ii) single episodic prediction.

For multiple episodic prediction, we sample multiple few-shot
detection tasks𝑇𝑖 from T for performance evaluation. In particular,
each meta-test task 𝑇𝑖 consists of a support set 𝑆𝑇𝑖 for fast adap-
tion/training, and a query set 𝑄𝑇

𝑖
for test/evaluation. About the

fast adaption for each meta-test task 𝑇𝑖 , we first compute the set
of prototypes from the support set 𝑆𝑇

𝑖
, and use these prototypes



Dataset Train #Img #cls Test #Img #cls
FSOD-VOC VOC2007trainval ∼ 3.8k 10 VOC2007test ∼ 2.5k 10
FSOD-ImageNet ImageNet-LOC ∼ 53k 100 ImageNet-LOC ∼ 117k 214
FSOD-COCO COCO2017train-60 ∼ 115k 60 COCO2017val-20 ∼ 5k 20

Table 1: Summary of two Few-Shot Object Detection (FSOD) benchmark testbeds in our experiments

to generate class-specific feature maps. We then perform a light
finetuning of the detection model based on the labeled images on
the support set. Finally, we can evaluate the meta-detector’s predic-
tion outputs on the query set 𝑄𝑇

𝑖
as a traditional object detection

problem:

(𝑝,𝑢) = Meta-RCNN(𝑄𝑇
𝑖 ; 𝑆

𝑇
𝑖 , 𝜃 ) (8)

where 𝑝 is class probability vector and 𝑢 is the location set of
bounding boxes predicted by Meta-RCNN on the query set.

For single episodic prediction, we only evaluate the model on the
single, fixed test set to directly compare with other benchmarks.

4 EXPERIMENTS

4.1 Datasets

We construct three benchmark testbeds to facilitate the performance
evaluation of few-shot object detection (FSOD) in meta-learning set-
tings: (i) FSOD-VOC based on Pascal VOC2007; (ii) FSOD-ImageNet
based on the animal subset of ImageNet-LOC dataset; and (iii) FSOD-
COCO based on MSCOCO. Table 1 gives a summary of the datasets.
Pascal VOC2007 has 20 categories with 5k images in trainval set and
5k images in test set. A subset of 10 categories are randomly selected
from VOC2007 trainval set for Meta-Training and the remaining
10-category subset of VOC2007 test set is used for Meta-Test. Im-
ages without target object categories are excluded in Meta-Test.
For FSOD-ImageNet benchmark, we use the subset of first 100 an-
imal classes of ImageNet in Meta-Training stage and the subset
of remaining 214 animal species in ImageNet-LOC in Meta-Test
stage. For FSOD-COCO benchmark, we use the 20 categories set
in Pascal VOC in Meta-Test stage and the subset of remaining 60
categories in MSCOCO in Meta-Test stage. The backbone used in
FSOD-VOC and FSOD-COCO benchmark is pre-trained on Ima-
geNet. In FSOD-ImageNet benchmark, following the same setting
as RepMet [22], we adopt the weights of Faster R-CNN [21] pre-
trained on MSCOCO dataset as backbone. Notably, there is no class
overlap between MSCOCO set and FSOD-ImageNet test set. In our
experiments, we conduct two types of evaluation: multiple episodic
task and single episode task. For multiple episodic task, we evalu-
ated our model on multiple tasks which are randomly sampled from
test set, while for single episodic task, we finetune and evaluate
the model on a fixed single few-shot dataset in Meta-Test stage
(denoted as traditional settings).

4.2 Experimental Setups

4.2.1 TaskGeneration. For each benchmark,Meta-RCNN is eval-
uated on multiple tasks with different 𝐾way-𝑁 shot few-shot set-
tings (𝑁 annotated images per category). For FSOD-VOC bench-
mark, we have 3 few-shot settings to evaluate Meta-RCNN: 5way-
1shot, 5way-3shot and 5way-5shot. In detection, a single image has

more than one object, so here we define the meaning of shot as in-
stance number, not image number. On FSOD-ImageNet benchmark,
we mainly follow [2] and [22] with two settings: 50way-1shot and
50way-5shot.

4.2.2 Meta-model Parameter Setting. In Meta-Training stage,
we totally finetune the model for 8k and 60k iteration in FSOD-VOC
benchmark and FSOD-ImageNet benchmark respectively. There is
1 image per class in query set to update the model weights. The
initial learning rate is set to 1e-3 and is reduced to 1e-4 every 4k/30k
iterations. We set the batch size of query as 4 during update.

4.2.3 Basic Detection Parameter Settings. The parameter set-
tings for Meta-RCNN are identical to vanilla Faster RCNN. Propos-
als overlap with objects higher than 0.5 are considered positive and
less than 0.3 are negative. During Meta-Training the top 128 most
confident proposals are selected for training, and 300 proposals
with highest confidence score are selected during evaluation. We
build our Meta-RCNN based on Faster RCNN with VGG16 [23] and
ResNet [9] model which are pretrained on ImageNet.

4.2.4 Model Evaluation. We evaluate Meta-RCNN based onmul-
tiple tasks of few-shot settings, which follows the evaluation metric
of standard meta learning settings. Specifically, during the meta-
test evaluation stage, a set of 200 𝐾way-𝑁 shot tasks are sampled
from the meta-test dataset, and only the images from the query
set in each task will be evaluated. The mean Average Precision
(mAP) over the selected 𝐾 categories is used as the performance
evaluation score.

4.3 Results on FSOD-VOC Benchmark

We evaluate our Meta-RCNN on FSOD-VOC benchmark where a
subset of 10 Pascal VOC categories are selected for Meta-Training
and another 10 categories are used for Meta-Test. For a fair compar-
ison, these two subsets are split as similar as possible. For example,
we keep animal categories on both sides since they share similar
semantics information.

We compare with the proposed Meta-RCNN method on FSOD-
VOC by implementing the following three baselines:

• vanilla FRCN [21]: the vanilla Faster RCNN which is the
most popular object detection algorithm with competitive
performance on many benchmarks. The vanilla FRCN is
not designed for few-shot detection problem, but we try
to include this baseline by fine-tuning the detector on the
few-shot training data.

• LSTD [2] is a few-shot detection algorithm based on Faster
RCNN. LSTDuses categorical regularization to transfer knowl-
edge from 𝐿 to 𝑆 .

• FRCN-PN is a simple baseline for few-shot object detection
using meta learning, which combines Faster RCNN and Pro-
totype Networks [24]. Specifically, it replaces the final FC



Method Backbone 5way-1shot 5way-3shot 5way-5shot
vanilla FRCN [21] VGG16 14.78% 20.34% 26.89%
LSTD [2] VGG16 17.66% 22.37% 29.00%
FRCN-PN VGG16 12.71% 13.91% 14.33%
FRCN-PN (Finetuned.) VGG16 16.48% 21.51% 26.01%
Meta-RCNN (ours) VGG16 19.03% 24.51 % 31.23 %

Table 2: mAP Performance Evaluation on the FSOD-VOC benchmark

layer of Faster RCNN by the non-parametric prototypical
networks.

All the above baselines including the proposed Meta-RCNN are
based on VGG16 [23]. For regular FRCN and LSTD, we first train a
global Faster RCNN during Meta-Training, and then the pretrained
detectors are adapted to different tasks during Meta-Test. During
Meta-Test, Meta-RCNN and vanilla FRCN are finetuned over 4
epochs while LSTD requires longer finetuning period (10 epochs).
For FRCN-PN, prototypes of different categories are extracted as
Meta-RCNN, and metric distances are learned to assign correct la-
bels to each proposal. For fair comparison, we also add one baseline
of finetuning FRCN-PN in Meta-Test stage, where the images of
support set are also used as query images. Table 2 shows the results
on three settings.

From Table 2, the performances of all four methods improve
when the number of training shots increases. Notably, FRCN-PN
obtains less improvement when the number of shots increases,
primarily because the non-parametric classifier of PN limits its
learning capacity from the increased training samples. By contrast,
benefit from the finetuning operation as well as the FC layer in final
classification and regression, our Meta-RCNN can still maintain
consistent improvement when more training samples are avail-
able. Furthermore, it is interesting to see that the vanilla FRCN
outperforms FRCN-PN even in very few-shot cases (5way-1shot) if
FRCN-PN is not finetuned, where non-parametric property does
not help PN obtain better performance. We argue this is because
few-shot detection is generally more challenging than few-shot
classification, as we discussed in introduction section. FRCN-PN
cannot learn a representative prototype of background classes and
the whole framework cannot be optimized by meta learning style
(e.g., RPN and bbox regressors). The failure of FRCN-PN indicates
naively attach components from few-shot classification framework
cannot solve few-shot detection problem. Finally, our Meta-RCNN
achieves better results than all the baselines, which validates the
effectiveness of our method.

4.3.1 Ablation study of RPN. Here, we analyze the performance
of RPN to validate our concerns of negative impact of irrelevant
categories. We use vanilla FRCN and FRCN-PN as our baselines.
The models are optimized in the same manner as before, but during
Meta-Test phase, we evaluate the average recall on each task instead
of mAP performance.

As observed from the results in Table 3, the vanilla FRCN sig-
nificantly outperforms FRCN-PN that combines Faster RCNN and
Prototypical Network. This is because the objects of irrelevant cat-
egories in the same image hurt the training process of RPN. By
contrast, our Meta-RCNN outperforms these two baselines signifi-
cantly. This is because our Meta-RCNN learns a general feature map

for all 𝐾way-𝑁 shot detection tasks and optimizes RPN by meta
learning, which proves to be more effective in few-shot settings.
Notably, the results are surprising since the recall of RPN in few-
shot scenario is significantly lower (> 90% with enough training
data on VOC dataset).

Model Backbone 5w-1s 5-3s 5w-5s
vanilla FRCN VGG16 24.9% 26.5% 28.4%
FRCN-PN VGG16 24.7% 24.9% 26.1%
Meta-RCNN (ours) VGG16 26.8% 29.1% 34.9%

Table 3: Recall evaluation of Meta-RCNN on FSOD-VOC

benchmark test set. For brevity, “5way-1shot" is abbrevi-

ated as "5w-1s".

4.4 Results on FSOD-ImageNet Benchmark

On FSOD-ImageNet benchmark, we adapt the weights of a net-
work pretrained on MSCOCO trainval set, and then optimize Meta-
RCNN based on this initialized model (which is similar to the other
baselines). The Meta-RCNN is evaluated on the animal subset of
ImageNet-LOC, which only contains single animal category per
image and thus there are no irrelevant classes during training. This
is simpler than the situation we discussed. In addition to FRCN
and LSTD, we also include another recent baseline RepMet [22],
which replaces FC classification layers in FRCN with more careful
design of PN layers (learning multiple prototypes per class etc.), as
well as much stronger backbone (DCN [3] and FPN [14]). Table 4
shows the results, in which our Meta-RCNN outperforms the other
methods.

Model Backbone 50w-1s 50w-5s
vanilla FRCN [21] VGG16 16.5% 34.3%
LSTD [2] VGG16 19.2% 37.4%
RepMet [22] DCN+FPN 24.1% 39.6%
Meta-RCNN (ours) ResNet101 25.3% 40.6%

Table 4: mAP performance evaluation on FSOD-ImageNet

benchmark. Here “50way-1shot" is abbreviated as "50w-1s".

4.5 Results on Traditional VOC Bencmark

We compare our model on VOC dataset in the same manner (1
task) as several baselines in literature. We follow the experiment
settings as [10]. We first train on a large annotated dataset, and
then finetune on a single few-shot dataset. We use VOC2007 and
VOC2012 trainval for training, and VOC2007 test set for testing.
During training, we use 15 categories for large annotated dataset
and 5 categories for few-shot dataset. We report the results in Table
5, in which our Meta-RCNN surpasses all the competitors on the
same benchmark, including the existing SOTA method FSOD [5].



Model Backbone 1-shot 2-shot 3-shot 5-shot 10-shot
YOLO-joint ResNet-101 0.0 0.0 1.8 1.8 1.8
YOLO-ft ResNet-101 3.2 6.5 6.4 7.5 12.3
YOLO-ft-full ResNet-101 6.6 10.7 12.5 24.8 38.6
FRCN+joint ResNet-101 2.7 3.1 4.3 11.8 29.0
FRCN+ft ResNet-101 11.9 16.4 29.0 36.9 36.9
FRCN+ft-full ResNet-101 13.8 19.6 32.8 41.5 45.6
LSTD [2] ResNet-101 8.2 11.0 12.4 29.1 38.5
MetaYolo [10] ResNet-101 14.8 15.5 26.7 33.9 47.2
MetaDet-YOLO [27] VGG16 17.1 19.1 28.9 35.0 48.8
MetaDet-FRCN [27] VGG16 18.9 20.6 30.2 36.8 49.6
MetaR-CNN [28] ResNet-101 19.9 25.5 35.0 45.7 51.5
FSOD [5] ResNet-101 31.7 32.0 33.4 41.6 50.0
Meta-RCNN (ours) ResNet-101 31.9 33.7 35.9 46.3 53.1

Table 5: mAP performance on Pascal VOC benchmark. All the models are evaluated with 5 ways on VOC2007 test set. For

MetaDet only VGG16 results are available. Notably, for 1-shot and 2-shot settings, we do not finetune our Meta-RCNN model

to avoid overfitting.

4.6 Results on Traditional COCO benchmarks

In this section, we report the few-shot detector benchmark eval-
uation results on MSCOCO datasets. The model is trained with
ResNet-50, and we resize the shorter size of the image into 800
pixels, with longer size no more than 1333 pixels. The support im-
age is resized into 320x320. We use 20 categories in VOC dataset
for testing and the left 60 categories for training. We finetune the
model for 120k iterations in meta-training stage and 3k iterations
in Meta-Test stage. The initial learning rate is set to 0.001 and will
decays 10 times by every 3 epochs. Finally we evaluate our model
in MSCOCOval set (5k images) with two settings: 10 shots and
30 shots. Table 6 shows the evaluation results. As observed from
Table 6, our Meta-RCNN method outperforms all the existing meth-
ods including some state-of-the-art meta-learning approaches with
substantial margins.

4.7 Visualization

Herewe visualize some results from Pascal VOC in Figure 3. Notably,
the model is adopted with only 1-object per class without any
further finetuning on novel classes.

Figure 3: Our model can correctly detect novel objects even

with 1-shot object. However, finetuning is required to deal

with more complicated scenarios.

4.8 Discussions

Extension to other Meta-Learning Methods: Beyond prototypical net-
works, other meta-learning methods such as MAML [6] in principle
can also be applied, e.g., we can apply MAML for vanilla FRCN

framework, which updates the base model with the average gradi-
ent step of multiple tasks. However, in our experiments, the training
process of MAML was unstable. This may be because few-shot de-
tection is generally more difficult than few-shot classification, due
to multiple dependent loss objectives (FRCN relies on RPN and
regression loss etc.) and more complicated noisy contexts. In future,
we plan to explore extensions to other meta-learning methods.

5 RELATEDWORK

5.1 Generic Object Detection

Object detection based on deep learning can be broadly divided
into two families: two-stage detectors and one-stage detectors.
Two-stage detectors such as RCNN [8], Fast RCNN [7] and Faster
RCNN [21], first generate a sparse set of proposal candidates, and
a fixed-length feature vector is extracted from each of these candi-
dates, followed by a categorical classifier and a bounding box re-
gressor. Two-stage detectors have achieved state-of-the-art results
on many public benchmarks [9, 14], but are often slower than one-
stage detectors. One-stage detectors such as SSD [16], YOLO [18, 19]
and RefineDet [29] directly generate categorical proposals from the
feature map and thus avoid cascaded region classifiers. One-stage
detectors can achieve real-time inference speed but the detection
accuracy is often inferior to two-stage detection algorithms. Both
detection families assume access to a large set of annotated data,
and are not suitable for scenarios where the model has access to
small amounts of annotated training data. In contrast, our proposed
Meta-RCNN method addresses detection in the few-shot setting,
and achieves promising results.

5.2 Meta Learning for few-shot classification

Few-shot learning has been widely explored in image classification
particularly through meta-learning. [17] optimized a base-model
via an LSTM-based meta-learner which simulated traditional SGD
optimization. [6] proposed MAML which learned a good model
initialization which could adapt to a new task in few gradient
step updates. Based on MAML, [13] proposed Meta-SGD which
learned a set of learnable parameters to control gradient step of
different tasks. Learning initialization is potentially a very general



Shot Baselines Backbone AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿
Meta-Yolo [10] DarkNet-19 5.6 12.3 4.6 0.9 3.5 10.5
FRCN+ft [28] ResNet-50 1.3 4.2 0.4 0.4 0.9 2.1

10 FRCN+ft-full [28] ResNet-50 6.5 13.4 5.9 1.8 5.3 11.3
MetaDet [27] VGG16 7.1 14.6 6.1 1.0 4.1 12.2

Meta R-CNN [28] ResNet-50 8.7 19.1 6.6 2.3 7.7 14.0
Meta-RCNN (Ours) ResNet-50 9.4 17.1 9.4 1.7 11.2 18.1

Meta-Yolo [10] DarkNet-19 9.1 19.0 7.6 0.8 4.9 16.8
FRCN+ft [28] ResNet-50 1.5 4.8 0.5 0.3 1.8 2.0

30 FRCN+ft-full [28] ResNet-50 11.1 21.6 10.3 2.9 8.8 18.9
MetaDet [27] VGG16 11.3 21.7 8.1 1.1 6.2 17.3

Meta R-CNN [28] ResNet-50 12.4 25.3 10.8 2.8 11.6 19.0
Meta-RCNN (Ours) ResNet-50 12.8 25.5 12.2 2.3 12.3 19.3

Table 6: Low-shot detection performance on COCO val set with 20-way novel classes. Two 20-way settings are evaluated: 10

shots and 30 shots per each novel class using the ResNet-50 backbone. For MetaDet only VGG16 results are available

idea for few-shot learning however, the training process can be
unstable [1] especially in challenging tasks such as detection. [26]
proposed Matching Networks based on a non-parametric principle
by learning a differentiable K-Nearest Neighbour model, and [24]
proposed Prototypical Networks using the similar principle. These
have been extended to learning the distance metric for K-NN [25]
and semi-supervised few-shot learning[20]. Directly adapting these
techniques for object detection is not trivial, especially for the RPN,
which generates proposals for all objects rather than proposals only
for the objects of interest for the few-shot task.

5.3 Few-shot Object Detection

In contrast to classification, few-shot detection has received less
attention. [4] addressed few-shot detection using large-scale un-
labeled data. Their model is based on a semi-supervised method
which extracts knowledge from unlabeled dataset to enrich training
dataset by self-paced learning and multi-modal learning. However,
their method may be misled by the incorrect predictions from initial
model and also requires expensive re-training the model for every
new task. [2] proposed a Low-shot Transfer Detector (LSTD) using
regularization to transfer knowledge from source domain to target
domain by minimizing the gap between the two domains.

Recently, in parallel with our work 1, there have been some
concurrent efforts in applying meta-learning for object detection
similar to our work. [22] proposed RepMet as a meta-learning based
few-shot detector which replaces the fully connected classification
layer of a standard detector with a prototypical network. However,
it suffers from two critical limitations in that RPN and bounding box
regression are not tailored for few-shot challenges (as they are not
meta-trained), and it often fails in distinguishing object classes of
interest from background (including object classes not of interest).
[10] proposed Meta-YOLO by applying meta-learning with YOLO.
They optimize the few-shot detector by re-weighting the channels
of global features with support images. [27] proposed MetaDet as
a meta-learning framework for few-shot detection. In MetaDet,
they disentangle the learning process of class-agnostic parts and
class-specific parts, and learn a meta model to predict class-specific
parameters from few-shot data. Different from MetaDet which

1An early version of this work was completed and submitted to a conference in 2019

learns a meta model for parameter prediction, our model focuses
on feature learning. We learn a meta model to calibrate the feature
representation from few-shot data. [28] shares the same name as
our model but has a very restrictive definition of the components
that are meta-learned (only the region of interest features). More-
over, there are limitations with regard to this approaches ability to
be easily extended to quickly adapt to novel few-shot tasks (e.g. it
assumes that a given few-shot detection task will have objects from
the annotated train dataset, and thus can wrongly predict novel
objects as belonging to one of the categories from training data. In
contrast to these approaches, in our model, all the components can
be optimized in an end-to-end manner under the meta-learning par-
adigm, making each component few-shot capable, and this model
can quickly adapt to any novel few-shot detection task.

Finally, we would like to compare with another Meta R-CNN [28]
which was proposed in parallel with our work. Despite the simi-
lar names, there are a number of key differences. First of all, we
re-formulate the original multi-class classification task into a set
of binary classification tasks, which simplify the whole few-shot
detection task. Second, the RPN in our Meta-RCNN is meta-trained
jointly together with the classifiers and bbox regression, while
the approach in [28] only applies meta-learning for classifiers and
regressors, and their RPN is trained by a conventional way. Be-
sides, the training procedures of the two methods are very different,
including the model design and training data sampling, etc.

6 CONCLUSION

We investigated the problem of few-shot object detection in a meta-
learning setting, and proposed a new few-shot object detection
method named Meta-RCNN. Specifically, we propose to learn prior
from the support set by borrowing the idea of prototypical net-
works, and then extend the popular Faster RCNN method by jointly
training the RPN, the object classifier and the bounding box regres-
sor together in a meta-learning framework. We propose a novel
class-aware attentionmodule to facilitate themeta-training.We con-
duct extensive experiments on multiple few-shot object detection
benchmarks and obtain promising results. In future work, we plan
to extend our framework by exploring more recent meta-learning
techniques and evaluating diverse detectors.
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