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a b s t r a c t 

Recent years have witnessed significant advances in deep learning based object detection. Despite being 

extensively explored, most existing detectors are designed to detect objects with relatively low-quality 

prediction of locations, i.e., they are often trained with the threshold of Intersection over Union (IoU) set 

as 0.5. This can yield low-quality or even noisy detections. Designing high quality object detectors which 

have a more precise localization (e.g. IoU > 0.5) remains an open challenge. In this paper, we propose 

a novel single-shot detection framework called Bidirectional Pyramid Networks (BPN) for high-quality 

object detection. It comprises two novel components: (i) Bidirectional Feature Pyramid structure and An- 

chor Refinement (AR). The bidirectional feature pyramid structure aims to use semantic-rich deep layer 

features to enhance the quality of the shallow layer features, and simultaneously use the spatially-rich 

shallow layer features to enhance the quality of deep layer features, leading to a stronger representa- 

tion of both small and large objects for high quality detection. Our anchor refinement scheme gradually 

refines the quality of pre-designed anchors by learning multi-level regressors, giving more precise local- 

ization predictions. We performed extensive experiments on both PASCAL VOC and MSCOCO datasets, and 

achieved the best performance among all single-shot detectors. The performance was especially superior 

in the regime of high-quality detection. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 1 

Object detection is a fundamental research problem in com- 2 

puter vision. Recent years have witnessed remarkable progress in 3 

object detection algorithms catalyzed by the success of powerful 4 

deep learning techniques [1–3] . Currently, the state-of-the-art 5 

deep learning based object detection frameworks can be gener- 6 

ally categorized into two major groups: (i) two-stage detectors, 7 

such as the family of Region-based CNN (R-CNN) [2] and their 8 

variants [1,4] and (ii) one-stage detectors, such as SSD [5] and 9 

its variants [6,7] . Two-stage RCNN-based detectors first learn to 10 

generate a sparse set of proposals followed by training region 11 

classifiers, while one-stage SSD-like detectors directly make cate- 12 

gorical prediction of objects based on the predefined anchors on 13 

the feature maps without a proposal generation step. Two-stage 14 

detectors usually achieve better detection performance and often 15 
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report state-of-the-art results on benchmark data sets, while 16 

one-stage detectors are significantly more efficient and thus more 17 

suitable for many real-word practical/industrial applications where 18 

fast/real-time detection speed is of crucial importance. 19 

Despite being studied extensively, most existing object detec- 20 

tors are designed for achieving localization with relatively low- 21 

quality precision (e.g. Intersection over Union (IoU) threshold of 22 

0.5 is considered good enough). When the goal is to achieve higher 23 

quality localization precision (IoU > 0.5), the detection performance 24 

often drops significantly [8] . A naive solution to address this is- 25 

sue is to increase the IoU threshold when selecting positive sam- 26 

ples (e.g., from 0.5 to 0.7) during training, such that the detector is 27 

trained on only high quality examples. Unfortunately, such a strat- 28 

egy will lead to very few (positive) training samples, and will con- 29 

sequently lead to overfitting, especially for single-shot SSD-like de- 30 

tectors. In addition, most object detectors aim to use the strength 31 

of deep features for object localization. This can have adverse ef- 32 

fects as deep features (while being semantically rich) lack detailed 33 

information about the spatial location of the objects. 34 

In this paper, we aim to develop a novel high-quality single- 35 

shot detector. We follow the family of single-stage SSD-like detec- 36 
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tors, and design an approach that makes it amenable for high qual- 37 

ity detection. We identify two critical drawbacks of SSD-like detec- 38 

tors for learning high quality detectors: first, the single-shot fea- 39 

ture representations may not be discriminative and robust enough 40 

for precise localization; and second, the singe-stage detection 41 

scheme relies on the predefined anchors which are very rigid and 42 

often inaccurate. To overcome these drawbacks for high-quality 43 

object detection tasks, in this paper, we propose a novel single- 44 

shot detection framework named “Bidirectional Pyramid Networks”45 

(BPN). Specifically, BPN uses a novel Bidirectional Pyramid Struc- 46 

ture, that boosts the vanilla feature pyramid [3] by reinforcing it 47 

with a Reverse Feature Pyramid to fuse both deep and shallow 48 

features to learn more effective and robust representations. Un- 49 

like Feature Pyramid Network (FPN) which aims to enhance the 50 

shallow features with semantically rich deep features, the Reverse 51 

FPN aims to enhance the deep features with spatially rich shal- 52 

low features, thereby improving the representation for better lo- 53 

calization. BPN is also augmented with a novel Anchor Refinement 54 

scheme that learns to gradually improve the quality of predefined 55 

anchors which are often inaccurate at the beginning. Specifically, 56 

we train the bounding box regressors at different levels of qualtiy 57 

(IoU thresholds), and in an incremental manner, feed the bound- 58 

ing box predictions of a specific quality into the predictions of the 59 

next higher quality. We conducted extensive experiments on PAS- 60 

CAL VOC and MSCOCO showed that the proposed method achieved 61 

the state-of-the-art results for high-quality object detection while 62 

still maintaining the advantage of computational efficiency of sin- 63 

gle shot detectors. 64 

2. Related work 65 

Object detection has been extensively studied for decades [2,9] . 66 

In early stages of research, object detection was based on sliding 67 

windows, and dense image grids were encoded by hand-crafted 68 

features, which were followed by training classifiers to find and 69 

locate objects. Viola and Jones [9] proposed cascaded classifiers by 70 

AdaBoost with Haar features for face detection and obtained excel- 71 

lent performance with high efficiency. After the remarkable success 72 

of applying Deep Convolutional Neural Networks on image classi- 73 

fication tasks [10–12] , deep learning based approaches have been 74 

actively explored for object detection, in particular, the region- 75 

based convolutional neural networks (R-CNN) [2] and its variants 76 

[1,3,4] . Currently deep learning based detectors can be generally 77 

categorized into two groups: (i) two-stage RCNN-based methods 78 

and (ii) one-stage SSD-based methods. RCNN-based methods, such 79 

as RCNN [2] , Fast RCNN [4] , Faster RCNN [1] , and R-FCN [13] , first 80 

generate a sparse set of proposals followed by region classifiers 81 

and location regressors. Two-stage detectors usually achieve better 82 

detection performance (than one-stage detectors) and report state- 83 

of-the-art results on many common benchmarks. This is largely be- 84 

cause the proposals are often carefully generated (e.g., by selective 85 

search [14] or RPN [1] ) and the proposed regions tightly bound the 86 

objects in the image. However, they often suffer from very slow in- 87 

ference speed due to having two-stages to perform detection. Un- 88 

like the two-stage RCNN-based methods, SSD-style methods (one- 89 

stage detectors), such as SSD [5] , YOLO [15] , YOLOv2 [6] ), ignore 90 

the proposal generation step by directly making predictions with 91 

manually designed pre-defined anchors and thus reduce the in- 92 

ference time significantly, enabling real-time detection. However, 93 

these anchors are often sub-optimal and sometimes ill-designed, 94 

and are unable to preciely match with the location of the objects 95 

in the image. Thus, SSD-style detectors [5] often struggle in the 96 

regime of high quality detection. 97 

In literature, most object detection studies have focused on de- 98 

tection with relatively low localization quality, with a default IoU 99 

threshold of 0.5. There are have been limited efforts for high- 100 

quality detection. LocNet [16] learns a single postprocessing net- 101 

work for location refinement without changing the distribution of 102 

hypotheses in different quality stages. Their method is only opti- 103 

mal for the initial anchor distribution, while our method learns 104 

multi-level anchor refinements for different quality stages. Multi- 105 

Path Network [17] proposed to learn multiple detection branches 106 

for different quality thresholds. However, this model suffered from 107 

not having sufficient training samples. Moreover, it was computa- 108 

tionally slow by virtue of being a two-stage detectors. Cascaded 109 

RCNN [8] learned regressors in a cascaded way, which refined the 110 

proposal predictions sequentially. However, this was also based on 111 

two-stage RCNN which prevented its use in real time object detec- 112 

tion. Moreover, they consider only refining the anchor quality, and 113 

ignore the quality of feature representation for high quality detec- 114 

tion. 115 

Our work is also related to studies for multi-scale feature fu- 116 

sion, which has proved to be an effective structure for object de- 117 

tection with different scales. ION [18] extracted region features 118 

from different layers by ROI Pooling; HyperNet [19] directly con- 119 

catenated features at different layers using deconvolution layers. 120 

FPN [3] and DSSD [20] fused features of different scales with 121 

lateral connection in a bottom-up manner, which effectively im- 122 

proved the detection of small objects. However, the vanilla feature 123 

pyramid [3] only considers boosting shallow layer features with 124 

deep layer features, but does not consider that shallow layer fea- 125 

tures could be helpful to deep semantic layer features by enriching 126 

them with crucial spatial information. We overcome this limitation 127 

by the proposed Bidirectional Feature Pyramid structure, where a 128 

reverse Feature Pyramid fuses the spatial information from shal- 129 

low features with the deep leayer features. Moreover, none of these 130 

methods aim to refine the bounding box predictions, and are often 131 

susceptible to obtaining low quality predictions. In contrast, our 132 

anchor refinement strategy improves the model’s ability to make 133 

high quality predictions. 134 

3. Single-shot high-quality object detection 135 

To train a detector, predefined anchors are often used. These 136 

anchors are generated densely or sparsely across the image, and 137 

the goal is to predict the class of object and the appropriate cor- 138 

rections to the original anchor localization. Each anchor is assigned 139 

to some object class label (including background) according to the 140 

anchor’s Jaccard overlap score with ground-truth objects, a.k.a. “In- 141 

tersection over Union” (IoU). When an anchor matches with the 142 

object for a given threshold, it is termed as a positive anchor. These 143 

positive anchors serve as ground truth for training. For objects that 144 

do not meet this threshold with any anchor, the best anchor is as- 145 

signed as a positive anchor during the training stage. Our aim is 146 

to devise a new single-shot detector for high-quality object detec- 147 

tion tasks by overcoming the drawbacks of state-of-the-art detec- 148 

tors. We tackle this challenge from both feature representation and 149 

anchor-refining perspectives. Existing single-shot object detectors, 150 

feature representations may not be discriminate and robust enough 151 

for precise localization, as they rely primarily on the deep layer 152 

features which while being semantically-rich, lack spatial informa- 153 

tion. We propose to strengthen deep layer features with spatially 154 

rich shallow feature to improve the localization performance. Sec- 155 

ond, for many state-of-the-art detectors, a group of anchors are of- 156 

ten generated/pre-defined on the feature maps densely or sparsely, 157 

followed by location regression and object classification prediction. 158 

Due to the scale variance of the objects, and several downsampling 159 

steps from the original image, the manually designed anchors will 160 

often not be able to find a good match with the ground truth ob- 161 

ject locations. This issue becomes more prominent when we aim 162 

to train high-quality detectors with a high IoU threshold (e.g., 0.7) 163 

since the number of positive anchors would decrease significantly 164 
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Fig. 1. The proposed framework of Bidirectional Pyramid Networks (BPN) for single-shot high-quality detection. FP denotes Feature Pyramid building block, and rFP denotes 

the Reverse Feature Pyramid building block. Bidirectional Feature Pyramid block generates more robust and discriminative feature map and the Anchor Refinement ( AR ) is 

utilized for relocating anchors, each level of which is responsible for a certain quality of detection. Training sample quality improves as the Anchor Refinement progresses 

(with higher IoU). 

as IoU increases. This would consequently result in poor detection 165 

performance due to overfitting. Thus, we propose a novel anchor 166 

refinement procedure to improve the localization prediction. 167 

3.1. Framework of bidirectional pyramid networks 168 

We propose a novel framework called Bidirectional Pyramid 169 

Networks (BPN) to overcome the above drawbacks of SSD-style de- 170 

tectors, with the aim of developing a high-quality object detector. 171 

To address the weak feature representation issue of SSD-style de- 172 

tectors, we adapt the structure Feature Pyramid Networks (FPN) 173 

[3] and develop a novel Bidirectional Feature Pyramid structure 174 

that significantly boosts the effectiveness of Feature Pyramid(FP) 175 

structure. To address the issue of anchor quality, the key idea is to 176 

devise an effective yet efficient multi-level learning scheme to re- 177 

fine the quality of the anchors. We have classifiers and regressors 178 

at multiple levels, and for each level we train the classifier and 179 

regressor to refine anchors, before training the classifiers and re- 180 

gressors in the next level. Fig. 1 gives an overview of the proposed 181 

single-shot Bidirectional Pyramid Networks (BPN) for high-quality 182 

object detection, where the backbone network (as shown in the 183 

blue branch of Fig. 1 ) can be any CNN network, such as Alexnet 184 

[12] , GoogleNet [21] , VGG [11] , ResNet [10] , etc. For simplicity, we 185 

choose VGG-16 and ResNet-101 as backbone networks. 186 

Similar to typical single-shot detectors, at the lowest quality 187 

level with the default IoU = 0.5, the proposed BPN detector makes 188 

the prediction based on the predefined anchors. Then, the fea- 189 

tures are further enhanced by the Bidirectional Feature Pyramid 190 

which aggregates features from different depths. It consists of stan- 191 

dard feature pyramids in a bottom-up fashion (the purple branch 192 

of Fig. 1 ) and reverse feature pyramid in a top-down fashion (the 193 

green branch of Fig. 1 ). These three-level branches not only aggre- 194 

gate multi-level features to provide robust feature representations, 195 

but also enable multi-quality training. For the joint training with 196 

multiple quality levels, the Anchor Refinement scheme with multi- 197 

level learning optimizes anchors from the previous level/branch 198 

and sends them to the next level/branch. 199 

The above two key components, Bidirectional Feature Pyramid 200 

and Anchor Refinement, are seamlessly integrated in the proposed 201 

framework and can be trained end-to-end to achieve high-quality 202 

detection in a synergic manner. In the following, we present the 203 

detailed functioning of these components. 204 

3.2. Bidirectional feature pyramid structure 205 

We denote the index of feature maps for prediction as L , 206 

where L ∈ {1, 2, 3, 4} in our setting, and the levels of quality 207 

Q ∈ { 1 , 2 , 3 , . . . } with the corresponding IoU thresholds as IoU (Q ) ∈ 208 

{ 0 . 5 , 0 . 6 , 0 . 7 , . . . } . The feature map in depth L for quality Q predic- 209 

tion is denoted as F Q 
L 

, and anchors for training quality Q detector 210 

in depth L are denoted as A 

Q 
L 

. Specifically for this work, we choose 211 

three types of detectors with different quality levels: Low , Mid and 212 

High with the corresponding IoU threshold as 0.5, 0.6 and 0.7, re- 213 

spectively (See Fig. 1 for details). 214 

In order to improve the power of feature representation of SSD- 215 

style detectors, we apply Feature Pyramids (FP) [3] , which ex- 216 

ploits the inherent multi-scale and pyramidal hierarchy of deep 217 

convolutional networks to construct the representation of feature 218 

pyramids. Specifically, FPN fuses semantically-strong deep layer 219 

features with shallow features which are semantically-weak but 220 

spatially-strong. The idea is to strengthen the features by help- 221 

ing them with stronger semantic information. We propose to aug- 222 

ment this structure via a reverse Feature Pyramid (rFP), where 223 

the deep features are strengthened by the spatially strong shallow 224 

features. 225 

Reverse Feature Pyramid has several strengths. First, the deep 226 

feature representations are enhanced to for better localization of 227 

large objects in the high quality scenario; second, compared to 228 

stacked CNN for image classification, rFP reduces the distance 229 

from shallow features to deep features by using much fewer con- 230 

volution filters and thus more effectively preserves spatial in- 231 

formation. Finally, the lateral connections reuse different shallow 232 

layer features to reduce information attenuation from shallow fea- 233 

tures to deep features. We demonstrate this concept in Fig. 2 . 234 
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Fig. 2. Proposed bidirectional feature pyramid structure. 

Specifically, Fig. 2 (a) is the vanilla Feature Pyramid building block 235 

that fuses features in a bottom-up manner with lateral connec- 236 

tions. It is worth noting that there is no strengthening of the 237 

deepest feature layer from the Feature Pyramid (the right dia- 238 

gram of Fig. 1 ). Thus, we further build the Reverse Feature Pyra- 239 

mid by top-down aggregation (as shown in Fig. 2 (b)) with lat- 240 

eral connections to enhance deep layer features with rich spatial 241 

information. 242 

The formulations of Feature Pyramid (FP) and reverse Feature 243 

Pyramid (rFP) can be represented as: 244 

FP : F Q 
L 

= Deconv s 2 (F Q 
L +1 

) � Conv (F Q−1 
L 

) (1) 

245 

rFP : F Q 
L 

= Conv s 2 (F Q 
L −1 

) � Conv (F Q−1 
L 

) (2) 

where Deconv s 2 denotes the deconvolution operation for feature 246 

map up-sampling with stride 2 and Conv denotes convolution op- 247 

eration. � denotes element-wise summation. In this paper, we use 248 

3 × 3 convolution kernels with 256 channels to build the Feature 249 

Pyramid and Reverse Feature Pyramid in our BPN detector. 250 

3.3. Anchor refinement 251 

In order to both increase the number of positive anchors during 252 

training and improve their quality, we propose the Anchor Refine- 253 

ment (“AR”). We denote the anchors used at quality Q , depth L as 254 

AR 

Q 
L 

. In particular, AR has two parts: location regressor Reg Q 
L 

and 255 

a categorical classifier Cls Q 
L 

. At each level of quality, regressors re- 256 

ceive the processed anchors from the previous level of quality for 257 

further optimization ( A 

1 
L is the set of manually defined anchor): 258 

A 

Q 
L 

= Reg Q (A 

Q−1 
L 

; F Q 
L 

) , Q = 2 , 3 , . . . , L = 1 , 2 , . . . (3) 

A set of offsets is learned from the regressors to adjust the location 259 

of the predicted bounding boxes. Different from vanilla SSD, these 260 

bounding boxes are conditioned on the refined anchors and are be 261 

used as new anchors in next stage. 262 

Categorical classifiers learn to predict categorical confidence 263 

scores and assign them to these anchors: 264 

C Q 
L 

= Cls Q (F Q 
L 

) , Q = 1 , 2 , 3 . . . , L = 1 , 2 , . . . (4) 

Thus, the training loss at quality level Q can be written as: 265 

� Q = 

1 

N Q 

∗
∑ 

L 

∑ 

i 

(
� 

Q 
Cls 

({ C Q 
L i 
} , { t L i } ) 

+ λ ∗ � 
Q 
Reg 

({ A 

Q 
L i 
} , { g L i } ) 

)
(5) 

where N Q is the positive sample number at quality level Q , L i is 266 

the index of anchor in depth L feature map within a mini-batch, 267 

t L i is the ground truth class label of anchor L i , g L i is the ground 268 

truth location and size of anchor L i , λ is the balance weighting pa- 269 

rameter which is simply set to 1 in our settings. L Q 
Cls 

(. ) is softmax 270 

loss function over multiple classes confidences and L Q 
Reg 

(. ) is the 271 

Smooth L1-loss which is also used in [5] . The total training loss is 272 

the summation of losses at all the quality levels: 273 

� BPN = 

∑ 

Q 

� Q (6) 

3.4. Implementation details 274 

CNN backbone architecture: We choose VGG16 [11] and ResNet- 275 

101 [10] pre-trained on ImageNet as the backbone networks in 276 

our experiments. For VGG16, we follow [5] to transform the last 277 

two fully-connected layers “fc6” and “fc7” to convolutional lay- 278 

ers “conv_fc6” and “conv_fc7” via reducing parameters. To increase 279 

receptive fields and capture large objects, we attached two addi- 280 

tional convolution layers after the VGG16 (denoted as conv6_1 and 281 

conv6_2). Due to different scale norm in different feature maps, 282 

we re-scale the norms of the first two feature blocks to 10 and 283 

8 respectively. For ResNet-101, we added one extra residual block 284 

“res6” at the end of the network. 285 

Data augmentation: We adopt the augmentation strategies in 286 

[5] to make the detectors robust to objects with the changes in 287 

scale and color. Specifically, images are randomly expanded or 288 

cropped with additional photometric distortion to generate addi- 289 

tional training samples. 290 

Feature blocks for prediction: In order to detect objects at differ- 291 

ent scales, we use multiple feature maps for prediction. The vanilla 292 

convolution feature blocks in backbone are used for low-quality 293 

detection, feature pyramid blocks are used for mid-quality detec- 294 

tion, and the reverse feature pyramid blocks are used for high- 295 

quality detection. We use four feature blocks with stride 8, 16, 32 296 
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Table 1 

Detection results on PASCAL VOC dataset. All the methods were trained on VOC2007 and VOC2012 trainval sets and tested on VOC2007 

test set. 

Method Backbone Input size FPS mAP (%) 

IoU@0.5 IoU@0.6 IoU@0.7 

Two-stage Detectors: 

Fast R-CNN [4] VGG-16 ∼ 1000 × 600 0.5 70.0 62.4 49.4 

Faster R-CNN [1] VGG-16 ∼ 1000 × 600 7 73.2 67.7 54.4 

OHEM [23] VGG-16 ∼ 1000 × 600 7 74.6 68.9 55.9 

HyperNet [19] VGG-16 ∼ 1000 × 600 0.88 76.3 - - 

Faster R-CNN [10] ResNet-101 ∼ 1000 × 600 2.4 76.4 69.5 57.3 

ION [18] VGG-16 ∼ 1000 × 600 1.25 76.5 - - 

LocNet [16] VGG-16 ∼ 1000 × 600 - 77.5 - 64.5 

R-FCN [13] ResNet-101 ∼ 1000 × 600 9 80.5 73.2 61.8 

R-FCN Cascade [8] ResNet-101 ∼ 1000 × 600 7 81.0 75.8 66.7 

CoupleNet [24] ResNet-101 ∼ 1000 × 600 8.2 81.7 76.6 66.8 

One-stage Detectors: 

RON384 [25] VGG-16 384 × 384 15 75.4 66.8 54.2 

SSD300 [5] VGG-16 300 × 300 46 77.3 72.3 61.3 

DSOD300 [26] DS/64-192-48-1 300 × 300 17.4 77.7 73.4 63.6 

YOLOv2 [6] Darknet-19 544 × 544 40 78.6 69.1 56.5 

SSD512 [5] VGG-16 512 × 512 19 79.8 74.7 64.0 

RefineDet320 [7] VGG-16 320 × 320 40.3 80.0 74.2 63.6 

RefineDet512 [7] VGG-16 512 × 512 24.1 81.8 76.9 66.0 

RFBNet300 [27] VGG-16 300 × 300 83.0 80.7 75.5 65.5 

RFBNet512 [27] VGG-16 512 × 512 38.0 82.2 - - 

BPN320(ours) VGG-16 320 × 320 32.4 80.3 75.5 66.1 

BPN512(ours) VGG-16 512 × 512 18.9 82.2 77.6 68.3 

and 64 pixels in training each quality detector. In VGG16, conv4_3, 297 

conv5_3, conv_fc7, conv6_2 and their corresponding feature pyra- 298 

mid blocks FP3, FP4, FP5 and FP6, and reverse feature pyramid 299 

blocks rFP3, rFP4, rFP5 and rFP6 are used, while in ResNet-101, 300 

res3b3, res4b22, res5c, res6 and their corresponding feature pyra- 301 

mid blocks and reverse feature pyramid blocks are used. 302 

Anchor design: Originally a group of anchors are pre-designed 303 

manually. For each prediction feature block, one scale-specific set 304 

of anchors with three aspect ratios isssociated. In our approach, we 305 

set the scale of anchors as 4 times that of the feature map stride 306 

and set the aspect ratios as 0.5, 1.0 and 2.0 to cover different scales 307 

of objects. We first match each object to the anchor box with the 308 

best overlap score, and then match the anchor boxes to any ground 309 

truth with overlap higher than the quality thresholds. 310 

Optimization: We use “Xavier” method in [22] to randomly ini- 311 

tialize the parameters in extra added layers in VGG16 and ResNet- 312 

101. We set the mini-batch size as 32 in training and the whole 313 

network is optimized via the SGD optimizer (momentum = 0.9, 314 

weight decay = 0.005, and initial learning rate = 0.001). The training 315 

strategy varies a bit for different datasets. For PASCAL VOC dataset, 316 

the models are completely finetuned for 120k iterations and we 317 

decrease the learning rate to 10 −4 and 10 −5 after 80k and 100k 318 

iterations, respectively. For MSCOCO, the models are finetuned for 319 

400k iterations and we decrease the learning rate to 10 −4 and 10 −5 320 

after 280k and 360k iterations, respectively. All the detectors were 321 

trained and optimized end-to-end. 322 

Sampling strategy: The ratio of positive and negative anchors are 323 

imbalanced after the anchor matching step, so proper sampling 324 

strategy is necessary to address this imbalance. We sample a sub- 325 

set of negative anchors to keep the ratio of positive and negative 326 

anchors as 1:3 in training process. To achieve faster convergence, 327 

instead of randomly sampling negative anchors, we sort the neg- 328 

ative anchors according to the loss sufferred by them and select 329 

the hardest ones for training. Different IoU thresholds are used for 330 

different quality levels. We use three quality levels (low, mid and 331 

high) for IoU as 0.5, 0.6 and 0.7, respectively. 332 

Inference: During the inference phase, the anchor refinement 333 

different quality stage makes prediction and send the refined an- 334 

chors to the next quality stage. We take the predictions from AR in 335 

all quality stages to ensure they are suitable for all the low-, mid- 336 

and high-quality detection. 337 

4. Experiments 338 

We conduct extensive experiments on two publicly available 339 

benchmark datasets: Pascal VOC and MSCOCO. The evaluation met- 340 

ric for the detector performance is mean average precision which 341 

is widely used in evaluating object detection. 342 

4.1. Pascal VOC experiment 343 

We use Pascal VOC2007 trainval set and Pascal VOC2012 train- 344 

val set as our training set, and VOC2007 test set as testing set. 345 

There are 16k images for training and 5k images for testing. All 346 

models are based on VGG16 architecture as ResNet-101 has limited 347 

benefits for this dataset [20] . We train BPN with two resolutions of 348 

the input (320 × 320 and 512 × 512) and compare them with the 349 

state-of-the-art methods on low, mid and high quality detection 350 

scenarios (IoU thresholds as 0.5, 0.6 and 0.7, respectively). 351 

We show the comparison of performance of our proposed 352 

method BPN320 and BPN512 against several state of the art two- 353 

stage and one-stage baseline detectors in Table 1 . BPN320 obtains 354 

an accuracy of 80.3%, 75.5% and 66.1% in low, mid and high quality 355 

detection scenario respectively, which outperforms many detectors 356 

(e.g., SSD320, Faster RCNN, etc.). BPN512 achieves the state-of-the- 357 

art results of 82.2%, 77.6% and 68.3% for three scenarios respec- 358 

tively. Notably, BPN has clear advantage in high quality detection 359 

scenario(IoU = 0.7). BPN is one-stage detector, and can thus be used 360 

for real-time inference. BPN320 can perform inference at 32.4fps 361 

while BPN512 at 18.9fps on a Titan XP GPU. 362 

4.2. Ablation studies 363 

In this section, we conduct a series of ablation studies to ana- 364 

lyze the impact of different components of BPN. We use VOC2007 365 

and VOC2012 trainval set as our training set and test on 366 

VOC2007 test set. We use mean average precision on three dif- 367 

ferent IoU thresholds (0.5, 0.6 and 0.7) as our evaluation metric. 368 

The results are shown in Table 2 . 369 
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Table 2 

Detection results on PASCAL VOC dataset. For VOC 2007, all methods are trained on VOC 2007 and 

VOC 2012 trainval sets and tested on VOC 2007 test set. Original SSD uses six feature maps 

for prediction, while we use four feature maps to be consistent with BPN, so the detection result 

of SSD here is a bit lower. “Training IoU” denotes IoU thresholds trained for different stages (“-”

means no classifier in this stage). Bold fonts indicate the best mAP. 

Training IoU mAP@IoU = 0.5 mAP@IoU = 0.6 mAP@IoU = 0.7 

SSD (0.5, -, -) 76.3 71.0 60.4 

SSD (0.7, -, -) 68.4 61.9 50.8 

SSD + FP (-,0.5, -) 77.4 72.1 61.6 

BPN w / o AR (-, -,0.5) 78.1 72.7 63.4 

SSD + FP + AR (0.5, 0.5, -) 80.0 74.2 63.6 

SSD + FP + AR (0.5, 0.7, -) 78.1 73.7 63.1 

BPN (0.5, 0.5, 0.7) 80.0 75.1 65.4 

BPN (0.5, 0.6, 0.7) 80.3 75.5 66.1 

Bidirectional feature pyramid: To validate the effectiveness of the 370 

Bidirectional Feature Pyramid, we remove all Anchor Refinement 371 

components from BPN leaving only one classifier, and compare this 372 

model (called as BPN w / o AR) with vanilla SSD and SSD+FP. Bidi- 373 

rectional Feature Pyramid is built based on vanilla SSD and all 374 

three models are fine-tuned with IoU threshold as 0.5. In Table 2 , 375 

we can see that SSD+FP outperforms vanilla SSD because deep se- 376 

mantic features boost feature representations. Further, BPN w / o 377 

AR outperforms SSD+FP in all quality scenarios, demonstrating its 378 

effectiveness. 379 

Levels of AR: We aim to validate if the level of AR is impor- 380 

tant for training high-quality detectors. We show the results in 381 

Table 2 . Firstly, a vanilla SSD was trained with 0.7 IoU thresh- 382 

old. This model (row 2) performs much worse than the baseline 383 

(row 1) trained with 0.5 IoU threshold in all three quality levels, 384 

which validates that insufficient positive training samples causes 385 

overfitting. Second, we keep a single level of AR block on SSD+FP 386 

(called “SSD+FP+AR”), and train this model with 0.5 IoU thresh- 387 

old. We can see that the detection results improve significantly 388 

compared with “BPN w/o AR” in low and mid quality scenarios, 389 

and is similar in the high-quality scenario (63.6% vs 63.4%). We 390 

further train “SSD+FP+AR” with 0.7 IoU threshold and this model 391 

(row 6) also suffers from overfitting issues but it is less severe 392 

compared to vanilla SSD. This shows that Anchor Refinement can 393 

boost detection performance by refining anchor quality. However, 394 

a single level of AR was not enough to boost the performance of 395 

the model. Finally, to the above model, we add one more level 396 

AR blocks and jointly optimize AR with different quality settings 397 

(0.5,0.5,0.7) and (0.5,0.6,0.7), which utilize high quality anchors for 398 

training. These two models (row 7 and row 8) further improve 399 

the performance significantly especially for high quality scenario 400 

(IoU = 0.6 and IoU = 0.7, etc.). In summmary, single level of AR is ef- 401 

fective in addressing overfitting issues with SSD, and multi-level of 402 

AR are critical for enhancing the detection performance in high- 403 

quality scenarios. 404 

Proposal quality improved by anchor refinement: In this section, 405 

we validate the effectiveness of the Anchor Refinement blocks to 406 

improve the anchor quality. In Fig. 3 , we count the number of pos- 407 

itive anchors per image for training under different IoU thresh- 408 

olds for SSD, SSD+FP+AR and BPN. For SSD, anchors are generated 409 

manually and only a few anchors matched objects under high IoU 410 

threshold metric, which makes it hard to train effective detectors. 411 

For SSD+FP+AR, anchors have been refined by AR once, and the 412 

number of positive anchors increases significantly under all IoU 413 

thresholds. Further in BPN where anchors are refined by AR twice, 414 

more high quality anchors are generated on more robust feature 415 

maps. Notably, after being refined by AR we have sufficient positive 416 

training samples even under high IoU metrics, so that we could 417 

conduct gradually increasing training positive IoU thresholds (0.5, 418 

0.6 and 0.7). These results show that our AR blocks can gradually 419 
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Fig. 3. Average positive anchor number per image by different approaches under 

different “IoU Threshold” metric. 

improve anchor qualities and generate more positive anchors for 420 

training. 421 

Time analysis: As shown in Table 1 , BPN shows significant speed 422 

advances compared with two-stage detectors and thus in this part 423 

we analyze the time complexity. For two-stage object detectors, 424 

the inference time consists of three parts: backbone convolution 425 

computation ( T conv ), proposal generation ( T proposal ), and region- 426 

wise operation ( T region , including region classification and region 427 

regression). Assume we have R regions to predict, the time com- 428 

plexity of two-stage detector is: 429 

T two-stage = T conv + T proposal + T region × R (7) 

Notably, region operation is operated across all R regions ( R = 300 430 

by default), which makes two-stage detectors slow. BPN is the one- 431 

stage detector and avoids the unshared region operation. BPN has 432 

additional two blocks: rFP and anchor refinement. For rFP, it only 433 

requires additional 4 convolution layers computation and for an- 434 

chor refinement, only simple coordinate transformation is involved. 435 

Compared with the unshared region operation, the additional com- 436 

putation cost of BPN can be negligible: 437 

T BPN = T conv + T proposal + T rFP + T AR (8) 

438 

T rFP + T AR � T proposal × R (9) 

Thus our BPN is much faster than two-stage methods. 439 
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Table 3 

Detection results on MS COCO test-dev set. 

Method Backbone AP AP 50 AP 75 AP S AP M AP L 

Two-stage Detectors: 

Fast R-CNN [4] VGG-16 19.7 35.9 - - - - 

Faster R-CNN [1] VGG-16 21.9 42.7 - - - - 

OHEM [23] VGG-16 22.6 42.5 22.2 5.0 23.7 37.9 

ION [18] VGG-16 23.6 43.2 23.6 6.4 24.1 38.3 

OHEM ++ [23] VGG-16 25.5 45.9 26.1 7.4 27.7 40.3 

R-FCN [13] ResNet-101 29.9 51.9 - 10.8 32.8 45.0 

CoupleNet [24] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8 

Faster R-CNN by G-RMI [28] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0 

Faster R-CNN +++ [10] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9 

Faster R-CNN w FPN [3] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2 

Cascade RCNN w R-FCN [8] ResNet-101 33.3 52.6 35.2 12.1 36.2 49.3 

DeNet-101(wide) [29] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 

DeNet [29] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 

D-FCN [30] Aligned-Inception-ResNet 37.5 58.0 - 19.4 40.1 52.5 

Regionlets [31] ResNet-101 39.3 59.8 - 21.7 43.7 50.9 

Mask-RCNN [32] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2 

Soft-NMS [33] Aligned-Inception-ResNet 40.9 62.8 - 23.3 43.6 53.3 

Fitness NMS [34] ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5 

Cascade RCNN w FPN [8] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2 

One-stage Detectors: 

YOLOv2 [6] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 

SSD300 [5] VGG-16 25.1 43.1 25.8 6.6 25.9 41.4 

RON384 ++ [25] VGG-16 27.4 49.5 27.1 - - - 

SSD321 [20] ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3 

DSSD321 [20] ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6 

SSD512 [5] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5 

SSD513 [20] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 

DSSD513 [20] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1 

FPN-Reconfig [35] ResNet-101 34.6 54.3 37.3 - - - 

RetinaNet500 [36] ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1 

RetinaNet800 [36] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2 

RefineDet320 [7] VGG-16 29.4 49.2 31.3 10.0 32.0 44.4 

RefineDet512 [7] VGG-16 33.0 54.5 35.5 16.3 36.3 44.3 

RefineDet320 [7] ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4 

RefineDet512 [7] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4 

ExtremeNet [37] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1 

FCOS [38] ResNeXt-101 42.1 62.1 45.2 25.6 44.9 52.0 

FoveaBox [39] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6 

CenterNet-HG [40] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8 

CornerNet511 [41] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9 

CornerNet511 ++ [41] Hourglass-104 42.1 57.8 45.3 20.8 44.8 56.7 

BPN320 VGG-16 29.6 48.4 32.3 9.6 32.5 44.3 

BPN512 VGG-16 33.1 53.1 36.3 15.7 37.0 44.2 

BPN320 ++ VGG-16 35.4 55.3 38.5 19.0 37.9 47.0 

BPN512 ++ VGG-16 37.9 58.0 41.5 21.9 41.1 48.1 

BPN512 ResNet-101 37.6 59.1 40.5 18.7 42.2 50.8 

BPN512 ++ ResNet-101 42.3 62.8 46.3 25.7 46.1 53.2 

4.3. MSCOCO experiment 440 

We also evaluate the performance of BPN on the MSCOCO data 441 

set [42] , which has objects from 80 classes and about 120k images 442 

in trainval set. We use trainval35k set for training and test 443 

on test-dev set. Table 3 shows the results on MS COCO test-dev 4 4 4 

set. BPN320 with VGG-16 achieves 29.6% AP and when using larger 445 

input image size 512, the detection accuracy of BPN512 reaches 446 

33.1%, which is better than all other VGG16-based methods. No- 447 

tably, we notice in high quality detection metric AP 75 , BPN is 448 

clearly better than other detectors. As the objects in COCO dataset 449 

are of various scales, we also applied multi-scale testing based on 450 

BPN320 and BPN512 to reduce the impact of input size. The im- 451 

proved version BPN320++ and BPN512++ achieve 35.4% and 37.9% 452 

AP, which is the state-of-the-art performance among one-stage de- 453 

tectors. Different from Pascal VOC, using a deeper backbone such 454 

as ResNet could further improve detection accuracy compared to 455 

VGG16. Thus we report BPN512 with ResNet-101. Single BPN512 456 

achieves 37.6% AP and when using multi-scale and flip horizon- 457 

tal inference, it improves to 42.3% AP, which is the state-of-the- 458 

art performance among one-stage detectors. Notably, BPN512++ 459 

achieves 46.3% on AP 75 , which outperforms all other one-stage de- 460 

tectors significantly under high-quality metric. 461 

5. Conclusions 462 

In this paper, we proposed a novel single-stage detector frame- 463 

work Bidirectional Feature Pyramid Networks (BPN) for high- 464 

quality object detection. It comprises two novel major compo- 465 

nents: a Bidirectional Feature Pyramid structure for more effec- 466 

tive and robust feature representations and an Anchor Refinement 467 

component to gradually refine the quality of pre-designed anchors 468 

for more effective training. The proposed method achieves state-of- 469 

the-art results on Pascal VOC and MSCOCO dataset while enjoying 470 

real-time inference speed. 471 
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