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a b s t r a c t 

Object detection is a fundamental visual recognition problem in computer vision and has been widely 

studied in the past decades. Visual object detection aims to find objects of certain target classes with 

precise localization in a given image and assign each object instance a corresponding class label. Due to 

the tremendous successes of deep learning based image classification, object detection techniques using 

deep learning have been actively studied in recent years. In this paper, we give a comprehensive survey of 

recent advances in visual object detection with deep learning. By reviewing a large body of recent related 

work in literature, we systematically analyze the existing object detection frameworks and organize the 

survey into three major parts: (i) detection components, (ii) learning strategies, and (iii) applications & 

benchmarks. In the survey, we cover a variety of factors affecting the detection performance in detail, 

such as detector architectures, feature learning, proposal generation, sampling strategies, etc. Finally, we 

discuss several future directions to facilitate and spur future research for visual object detection with 

deep learning. 

© 2020 Published by Elsevier B.V. 

1. Introduction 1 

In the field of computer vision, there are several fundamen- 2 

tal visual recognition problems: image classification [1] , object de- 3 

tection and instance segmentation [2,3] , and semantic segmenta- 4 

tion [4] (see Fig. 1 ). In particular, image classification (Fig 1. 1 (a)), 5 

aims to recognize semantic categories of objects in a given im- 6 

age. Object detection not only recognizes object categories, but also 7 

predicts the location of each object by a bounding box ( Fig. 1 (b)). 8 

Semantic segmentation ( Fig. 1 (c)) aims to predict pixel-wise clas- 9 

sifiers to assign a specific category label to each pixel, thus 10 

providing an even richer understanding of an image. However, in 11 

contrast to object detection, semantic segmentation does not dis- 12 

tinguish between multiple objects of the same category. A rela- 13 

tively new setting at the intersection of object detection and se- 14 

mantic segmentation, named “instance segmentation” ( Fig. 1 (d)), 15 

is proposed to identify different objects and assign each of them 16 

a separate categorical pixel-level mask. In fact, instance segmenta- 17 

tion can be viewed as a special setting of object detection, where 18 

instead of localizing an object by a bounding box, pixel-level lo- 19 

calization is desired. In this survey, we direct our attention to re- 20 

view the major effort s in deep learning based object detection. A 21 
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good detection algorithm should have a strong understanding of 22 

semantic cues as well as the spatial information about the image. 23 

In fact, object detection is the basic step towards many computer 24 

vision applications, such as face recognition [5–7] , pedestrian de- 25 

tection [8–10] , video analysis [11,12] , and logo detection [13–15] . 26 

In the early stages, before the deep learning era, the pipeline 27 

of object detection was divided into three steps: (i) proposal gen- 28 

eration; (ii) feature vector extraction; and (iii) region classifica- 29 

tion. During proposal generation, the objective was to search lo- 30 

cations in the image which may contain objects. These locations 31 

are also called regions of interest (roi). An intuitive idea is to scan 32 

the whole image with sliding windows [16–20] . In order to cap- 33 

ture information about multi-scale and different aspect ratios of 34 

objects, input images were resized into different scales and multi- 35 

scale windows were used to slide through these images. During 36 

the second step, on each location of the image, a fixed-length fea- 37 

ture vector was obtained from the sliding window, to capture dis- 38 

criminative semantic information of the region covered. This fea- 39 

ture vector was commonly encoded by low-level visual descriptors 40 

such as SIFT (Scale Invariant Feature Transform) [21] , Haar [22] , 41 

HOG (Histogram of Gradients) [19] or SURF (Speeded Up Robust 42 

Features) [23] , which showed a certain robustness to scale, illumi- 43 

nation and rotation variance. Finally, in the third step, the region 44 

classifiers were learned to assign categorical labels to the covered 45 

regions. Commonly, support vector machines (SVM) [24] were used 46 

here due to their good performance on small scale training data. 47 

In addition, some classification techniques such as bagging [25] , 48 
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Fig. 1. Comparison of different visual recognition tasks in computer vision. (a) “Im- 

age Classification” only needs to assign categorical class labels to the image; (b) 

“Object detection” not only predict categorical labels but also localize each object 

instance via bounding boxes; (c) “Semantic segmentation” aims to predict categori- 

cal labels for each pixel, without differentiating object instances; (d) “Instance seg- 

mentation”, a special setting of object detection, differentiates different object in- 

stances by pixel-level segmentation masks. 

cascade learning [20] and adaboost [26] were used in region clas- 49 

sification step, leading to further improvements in detection accu- 50 

racy. 51 

Most of the successful traditional methods for object detec- 52 

tion focused on carefully designing feature descriptors to obtain 53 

embedding for a region of interest. With the help of good fea- 54 

ture representations as well as robust region classifiers, impres- 55 

sive results [27,28] were achieved on Pascal VOC dataset [29] (a 56 

publicly available dataset used for benchmarking object detection). 57 

Notably, deformable part based machines (DPMs) [30] , a break- 58 

through detection algorithm, were 3-time winners on VOC chal- 59 

lenges in 2007, 2008 and 2009. DPMs learn and integrate multiple 60 

part models with a deformable loss and mine hard negative exam- 61 

ples with a latent SVM for discriminative training. However, during 62 

2008 to 2012, the progress on Pascal VOC based on these tradi- 63 

tional methods had become incremental, with minor gains from 64 

building complicated ensemble systems. This showed the limita- 65 

tions of these traditional detectors. Most prominently, these lim- 66 

itations included: (i) during proposal generation, a huge number 67 

of proposals were generated, and many of them were redundant; 68 

this resulted in a large number of false positives during classifica- 69 

tion. Moreover, window scales were designed manually and heuris- 70 

tically, and could not match the objects well; (ii) feature descrip- 71 

tors were hand-crafted based on low level visual cues [23,31,32] , 72 

which made it difficult to capture representative semantic informa- 73 

tion in complex contexts. (iii) each step of the detection pipeline 74 

was designed and optimized separately, and thus could not obtain 75 

a global optimal solution for the whole system. 76 

After the success of applying deep convolutional neural net- 77 

works (DCNN) for image classification [1,33] , object detection 78 

also achieved remarkable progress based on deep learning tech- 79 

niques [2,34] . The new deep learning based algorithms outper- 80 

formed the traditional detection algorithms by huge margins. Deep 81 

convolutional neural network is a biologically-inspired structure 82 

for computing hierarchical features. An early attempt to build 83 

such a hierarchical and spatial-invariant model for image classi- 84 

fication was “neocognitron” [35] proposed by Fukushima. How- 85 

ever, this early attempt lacked effective optimization techniques for 86 

supervised learning. Based on this model, Lecun et al. [36] opti- 87 

mized a convolutional neural network by stochastic gradient de- 88 

scent (SGD) via back-propagation and showed competitive perfor- 89 

mance on digit recognition. After that, however, deep convolutional 90 

neural networks were not heavily explored, with support vector 91 

machines becoming more prominent. This was because deep learn- 92 

ing had some limitations: (i) lack of large scale annotated training 93 

data, which caused overfitting; (ii) limited computation resources; 94 

and (iii) weak theoretical support compared to SVMs. In 2009, Jia 95 

et al. [37] collected a large scale annotated image dataset ImageNet 96 

which contained 1.2M high resolution images, making it possible 97 

to train deep models with large scale training data. With the de- 98 

velopment of computing resources on parallel computing systems 99 

(such as GPU clusters), in 2012 Krizhevsky et al. [33] trained a 100 

large deep convolutional model with ImageNet dataset and showed 101 

significant improvement on Large Scale Visual Recognition Chal- 102 

lenge (ILSVRC) compared to all other approaches. After the success 103 

of applying DCNN for classification, deep learning techniques were 104 

quickly adapted to other vision tasks and showed promising results 105 

compared to the traditional methods. 106 

In contrast to hand-crafted descriptors used in traditional de- 107 

tectors, deep convolutional neural networks generate hierarchical 108 

feature representations from raw pixels to high level semantic in- 109 

formation, which is learned automatically from the training data 110 

and shows more discriminative expression capability in complex 111 

contexts. Furthermore, benefiting from the powerful learning ca- 112 

pacity, a deep convolutional neural network can obtain a better 113 

feature representation with a larger dataset, while the learning ca- 114 

pacity of traditional visual descriptors are fixed, and can not im- 115 

prove when more data becomes available. These properties made it 116 

possible to design object detection algorithms based on deep con- 117 

volutional neural networks which could be optimized in an end-to- 118 

end manner, with more powerful feature representation capability. 119 

Currently, deep learning based object detection frameworks 120 

can be primarily divided into two families: (i) two-stage de- 121 

tectors, such as Region-based CNN (R-CNN) [2] and its variants 122 

[34,38,39] and (ii) one-stage detectors, such as YOLO [40] and its 123 

variants [41,42] . Two-stage detectors first use a proposal genera- 124 

tor to generate a sparse set of proposals and extract features from 125 

each proposal, followed by region classifiers which predict the cat- 126 

egory of the proposed region. One-stage detectors directly make 127 

categorical prediction of objects on each location of the feature 128 

maps without the cascaded region classification step. Two-stage 129 

detectors commonly achieve better detection performance and re- 130 

port state-of-the-art results on public benchmarks, while one-stage 131 

detectors are significantly more time-efficient and have greater ap- 132 

plicability to real-time object detection. Fig. 2 also illustrates the 133 

major developments and milestones of deep learning based object 134 

detection techniques after 2012. We will cover basic ideas of these 135 

key techniques and analyze them in a systematic manner in the 136 

survey. 137 

The goal of this survey is to present a comprehensive under- 138 

standing of deep learning based object detection algorithms. Fig. 3 139 

shows a taxonomy of key methodologies to be covered in this sur- 140 

vey. We review various contributions in deep learning based ob- 141 

ject detection and categorize them into three groups: detection 142 

components, learning strategies, and applications & benchmarks. 143 

For detection components, we first introduce two detection set- 144 

tings: bounding box level (bbox-level) and pixel mask level (mask- 145 

level) localization. Bbox-level algorithms require to localize objects 146 

by rectangle bounding boxes, while more precise pixel-wise masks 147 

are required to segment objects in mask-level algorithms. Next, we 148 

summarize the representative frameworks of two detection fami- 149 

lies: two-stage detection and one-stage detection. Then we give a 150 

detailed survey of each detection component, including backbone 151 

architecture, proposal generation and feature learning. For learning 152 

strategies, we first highlight the importance of learning strategy of 153 
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Fig. 2. Major milestone in object detection research based on deep convolution neural networks since 2012. The trend in the last year has been designing object detectors Q3 

based on anchor-free (in red) and AutoML (in green) techniques, which are potentially two important research directions in the future. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Taxonomy of key methodologies in this survey. We categorize various contributions for deep learning based object detection into three major categories: Detection 

Components, Learning Strategies, Applications and Benchmarks. We review each of these categories in detail. 

detection due to the difficulty of training detectors, and then in- 154 

troduce the optimization techniques for both training and testing 155 

stages in detail. Finally, we review some real-world object detec- 156 

tion based applications including face detection, pedestrian detec- 157 

tion, logo detection and video analysis. We also discuss publicly 158 

available and commonly used benchmarks and evaluation metrics 159 

for these detection tasks. Finally we show the state-of-the-art re- 160 

sults of generic detection on public benchmarks over the recent 161 

years. 162 

We hope our survey can provide a timely review for researchers 163 

and practitioners to further catalyze research on detection systems. 164 

The rest of the paper are organized as follows: in Section 2 , we 165 

give a standard problem setting of object detection. The details 166 

of detector components are listed in Section 3 . Then the learning 167 

strategies are presented in Section 4 . Detection algorithms for real- 168 

world applications and benchmarks are provided in Sections 5 and 169 

6 . State-of-the-art results of generic detection, face detection and 170 

pedestrian detection are listed in Section 7 . Finally, we conclude 171 

and discuss future directions in Section 9 . The code is available at 172 

https://github.com/XiongweiWu/Awesome- Object- Detection . 173 

2. Problem settings 174 

In this section, we present the formal problem setting for object 175 

detection based on deep learning. Object detection involves both 176 

recognition (e.g., “object classification”) and localization (e.g., “lo- 177 

cation regression”) tasks. An object detector needs to distinguish 178 

objects of certain target classes from backgrounds in the image 179 

with precise localization and correct categorical label prediction to 180 

each object instance. Bounding boxes or pixel masks are predicted 181 

to localize these target object instances. 182 

More formally, assume we are given a collection of N annotated 183 

images 
{

x 1 , x 2 , . . . , x N 
}
, and for i th imag e x i , ther e ar e M i objects 184 

belonging to C categories with annotations: 185 

y i = 

{
(c i 1 , b 

i 
1 ) , (c i 2 , b 

i 
2 ) , . . . , (c i M i 

, b i M i 
) 
}

(1) 
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where c i 
j 
( c i 

j 
∈ C) and b i 

j 
(bounding box or pixel mask of the object) 186 

denote categorical and spatial labels of j th object in x i respectively. 187 

The detector is f parameterized by θ . For x i , the prediction y i 
pred 

188 

shares the same format as y i : 189 

y i pred = 

{
(c i 

pred 1 
, b i 

pred 1 
) , (c i 

pred 2 
, b i 

pred 2 
) , . . . ) 

}
(2) 

Finally a loss function � is set to optimize detector as: 190 

� (x, θ ) = 

1 

N 

N ∑ 

i =1 

� (y i pred , x i , y i ; θ ) + 

λ

2 

‖ 

θ‖ 

2 
2 (3) 

where the second term is a regularizer, with trade-off parame- 191 

ter λ. Different loss functions such as softmax loss [38] and focal 192 

loss [43] impact the final detection performance, and we will dis- 193 

cuss these functions in Section 4 . 194 

At the time of evaluation, a metric called intersection-over- 195 

union (IoU) between objects and predictions is used to evaluate 196 

the quality of localization (we omit index i here): 197 

IoU (b pred , b gt ) = 

Area (b pred 

⋂ 

b gt ) 

Area (b pred 

⋃ 

b gt ) 
(4) 

Here, b gt refers to the ground truth bbox or mask. An IoU thresh- 198 

old � is set to determine whether a prediction tightly covers the 199 

object or not (i.e. IoU ≥�; commonly researchers set � = 0 . 5 ). For 200 

object detection, a prediction with correct categorical label as well 201 

as successful localization prediction (meeting the IoU criteria) is 202 

considered as positive, otherwise it’s a negative prediction: 203 

Prediction = 

{
Positive c pred = c gt and IoU (b pred , b gt ) > �
Negative otherwise 

(5) 

For generic object detection problem evaluation, mean average pre- 204 

cision (mAP) over C classes is used for evaluation, and in real world 205 

scenarios such as pedestrian detection, different evaluation metrics 206 

are used. The details of evaluation metric for different detection 207 

tasks will be discussed in Section 6 . In addition to detection accu- 208 

racy, inference speed is also an important metric to evaluate object 209 

detection algorithms. Specifically, if we wish to detect objects in a 210 

video stream (real-time detection), it is imperative to have a de- 211 

tector that can process this information quickly. Thus, the detector 212 

efficiency is also evaluated on Frame per second (FPS), i.e., how 213 

many images it can process per second. Commonly a detector that 214 

can achieve an inference speed of 20 FPS, is considered to be a 215 

real-time detector. 216 

3. Detection components 217 

In this section, we introduce different components of object de- 218 

tection. The first is about the choice of object detection paradigm. 219 

We first introduce the concepts of two detection settings: bbox- 220 

level and mask-level algorithms. Then, We introduce two major 221 

object detection paradigms: two-stage detectors and one-stage de- 222 

tectors. Under these paradigms, detectors can use a variety of deep 223 

learning backbone architectures, proposal generators, and feature 224 

representation modules. 225 

3.1. Detection settings 226 

There are two settings in object detection: (i) vanilla object 227 

detection (bbox-level localization) and (ii) instance segmentation 228 

(pixel-level or mask-level localization). Vanilla object detection has 229 

been more extensively studied and is considered as the traditional 230 

detection setting, where the goal is to localize objects by rectangle 231 

bounding boxes. In vanilla object detection algorithms, only bbox 232 

annotations are required, and in evaluation, the IoU between pre- 233 

dicted bounding box with the ground truth is calculated to mea- 234 

sure the performance. Instance segmentation is a relatively new 235 

setting and is based on traditional detection setting. Instance seg- 236 

mentation requires to segment each object by a pixel-wise mask 237 

instead of a rough rectangle bounding box. Due to more precise 238 

pixel-level prediction, instance segmentation is more sensitive to 239 

spatial misalignment, and thus has higher requirement to process 240 

the spatial information. The evaluation metric of instance segmen- 241 

tation is almost identical to the bbox-level detection, except that 242 

the IoU computation is performed on mask predictions. Though 243 

the two detection settings are slightly different, the main compo- 244 

nents introduced later can mostly be shared by the two settings. 245 

3.2. Detection paradigms 246 

Current state-of-the-art object detectors with deep learning can 247 

be mainly divided into two major categories: two-stage detectors 248 

and one-stage detectors. For a two-stage detector, in the first stage, 249 

a sparse set of proposals is generated; and in the second stage, the 250 

feature vectors of generated proposals are encoded by deep convo- 251 

lutional neural networks followed by making the object class pre- 252 

dictions. An one-stage detector does not have a separate stage for 253 

proposal generation (or learning a proposal generation). They typ- 254 

ically consider all positions on the image as potential objects, and 255 

try to classify each region of interest as either background or a tar- 256 

get object. Two-stage detectors often reported state-of-the-art re- 257 

sults on many public benchmark datasets. However, they generally 258 

fall short in terms of lower inference speeds. One-stage detectors 259 

are much faster and more desired for real-time object detection 260 

applications, but have a relatively poor performance compared to 261 

the two-stage detectors. 262 

3.2.1. Two-stage detectors 263 

Two-stage detectors split the detection task into two stages: (i) 264 

proposal generation; and (ii) making predictions for these propos- 265 

als. During the proposal generation phase, the detector will try to 266 

identify regions in the image which may potentially be objects. The 267 

idea is to propose regions with a high recall, such that all objects 268 

in the image belong to at least one of these proposed region. In 269 

the second stage, a deep-learning based model is used to classify 270 

these proposals with the right categorical labels. The region may 271 

either be a background, or an object from one of the predefined 272 

class labels. Additionally, the model may refine the original local- 273 

ization suggested by the proposal generator. Next, we review some 274 

of the most influential effort s among two-stage detectors. 275 

R-CNN [2] is a pioneering two-stage object detector proposed 276 

by Girshick et al. in 2014. Compared to the previous state- 277 

of-the-art methods based on a traditional detection framework 278 

SegDPM [44] with 40.4% mAP on Pascal VOC2010, R-CNN signif- 279 

icantly improved the detection performance and obtained 53.7% 280 

mAP. The pipeline of R-CNN can be divided into three components: 281 

(i) proposal generation, (ii) feature extraction and (iii) region clas- 282 

sification. For each image, R-CNN generates a sparse set of pro- 283 

posals (around 20 0 0 proposals) via Selective Search [45] , which 284 

is designed to reject regions that can easily be identified as back- 285 

ground regions. Then, each proposal is cropped and resized into a 286 

fixed-size region and is encoded into a (e.g. 4096 dimensional) fea- 287 

ture vector by a deep convolutional neural network, followed by a 288 

one-vs-all SVM classifier. Finally the bounding box regressors are 289 

learned using the extracted features as input in order to make the 290 

original proposals tightly bound the objects. Compared to tradi- 291 

tional hand-crafted feature descriptors, deep neural networks gen- 292 

erate hierarchical features and capture different scale information 293 

in different layers, and finally produce robust and discriminative 294 

features for classification. utilize the power of transfer learning, R- 295 

CNN adopts weights of convolutional networks pre-trained on Im- 296 

ageNet. The last fully connected layer (FC layer) is re-initialized for 297 

the detection task. The whole detector is then finetuned on the 298 
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pre-trained model. This transfer of knowledge from the Imagenet 299 

dataset offers significant performance gains. In addition, R-CNN re- 300 

jects huge number of easy negatives before training, which helps 301 

improve learning speed and reduce false positives. 302 

However, R-CNN faces some critical shortcomings: (i) the fea- 303 

tures of each proposal were extracted by deep convolutional net- 304 

works separately (i.e., computation was not shared), which led to 305 

heavily duplicated computations. Thus, R-CNN was extremely time- 306 

consuming for training and testing; (ii) the three steps of R-CNN 307 

(proposal generation, feature extraction and region classification) 308 

were independent components and the whole detection framework 309 

could not be optimized in an end-to-end manner, making it dif- 310 

ficult to obtain global optimal solution; and (iii) Selective Search 311 

relied on low-level visual cues and thus struggled to generate high 312 

quality proposals in complex contexts. Moreover, it is unable to en- 313 

joy the benefits of GPU acceleration. 314 

Inspired by the idea of spatial pyramid matching (SPM) [46] , He 315 

et al. proposed SPP-net [47] to accelerate R-CNN as well as learn 316 

more discriminative features. Instead of cropping proposal regions 317 

and feeding into CNN model separately, SPP-net computes the fea- 318 

ture map from the whole image using a deep convolutional net- 319 

work and extracts fixed-length feature vectors on the feature map 320 

by a Spatial Pyramid Pooling (SPP) layer. SPP partitions the feature 321 

map into an N × N grid, for multiple values of N (thus allowing ob- 322 

taining information at different scales), and performs pooling on 323 

each cell of the grid, to give a feature vector. The feature vectors 324 

obtained from each N × N grid are concatenated to give the repre- 325 

sentation for the region. The extracted features are fed into region 326 

SVM classifiers and bounding box regressors. In contrast to RCNN, 327 

SPP-layer can also work on images/regions at various scales and 328 

aspect ratios without resizing them. Thus, it does not suffer from 329 

information loss and unwanted geometric distortion. 330 

SPP-net achieved better results and had a significantly faster 331 

inference speed compared to R-CNN. However, the training of 332 

SPP-net was still multi-stage and thus it could not be optimized 333 

end-to-end (and required extra cache memory to store extracted 334 

features). In addition, SPP layer did not back-propagate gradients 335 

to convolutional kernels and thus all the parameters before the 336 

SPP layer were frozen. This significantly limited the learning 337 

capability of deep backbone architectures. Girshick et al. proposed 338 

Fast R-CNN [38] , a multi-task learning detector which addressed 339 

these two limitations of SPP-net. Fast R-CNN (like SPP-Net) also 340 

computed a feature map for the whole image and extracted fixed- 341 

length region features on the feature map. Different from SPP-net, 342 

Fast R-CNN used ROI Pooling layer to extract region features. ROI 343 

pooling layer is a special case of SPP which only takes a single 344 

scale (i.e., only one value of N for the N × N grid) to partition the 345 

proposal into fixed number of divisions, and also backpropagated 346 

error signals to the convolution kernels. After feature extraction, 347 

feature vectors were fed into a sequence of fully connected layers 348 

before two sibling output layers: classification layer (cls) and 349 

regression layer (reg). Classification layer was responsible for gen- 350 

erating softmax probabilities over C + 1 classes (C classes plus one 351 

background class), while regression layer encoded 4 real-valued 352 

parameters to refine bounding boxes. In Fast RCNN, the feature 353 

extraction, region classification and bounding box regression steps 354 

can all be optimized end-to-end, without extra cache space to 355 

store features (unlike SPP Net). Fast R-CNN achieved a much better 356 

detection accuracy than R-CNN and SPP-net, and had a better 357 

training and inference speed. 358 

Despite the progress in learning detectors, the proposal gen- 359 

eration step still relied on traditional methods such as Selective 360 

Search [45] or Edge Boxes [48] , which were based on low-level vi- 361 

sual cues and could not be learned in a data-driven manner. To ad- 362 

dress this issue, Faster R-CNN [34] was developed which relied on 363 

a novel proposal generator: Region Proposal Network (RPN). This 364 

proposal generator could be learned via supervised learning meth- 365 

ods. RPN is a fully convolutional network which takes an image of 366 

arbitrary size and generates a set of object proposals on each po- 367 

sition of the feature map. The network slid over the feature map 368 

using an n × n sliding window, and generated a feature vector for 369 

each position. The feature vector was then fed into two sibling out- 370 

put branches, object classification layer (which classified whether 371 

the proposal was an object or not) and bounding box regression 372 

layer. These results were then fed into the final layer for the ac- 373 

tual object classification and bounding box localization. RPN could 374 

be inserted into Fast R-CNN and thus the whole framework could 375 

be optimized in an end-to-end manner on training data. This way 376 

RPN enabled proposal generation in a data driven manner, and was 377 

also able to enjoy the discriminative power of deep backbone net- 378 

works. Faster R-CNN was able to make predictions at 5FPS on GPU 379 

and achieved state-of-the-art results on many public benchmark 380 

datasets, such as Pascal VOC 2007, 2012 and MSCOCO. Currently, 381 

there are huge number of detector variants based on Faster R-CNN 382 

for different usage [39,49–51] . 383 

Faster R-CNN computed feature map of the input image and ex- 384 

tracted region features on the feature map, which shared feature 385 

extraction computation across different regions. However, the com- 386 

putation was not shared in the region classification step, where 387 

each feature vector still needed to go through a sequence of FC 388 

layers separately. Such extra computation could be extremely large 389 

as each image may have hundreds of proposals. Simply remov- 390 

ing the fully connected layers would result in the drastic decline 391 

of detection performance, as the deep network would have re- 392 

duced the spatial information of proposals. Dai et al. [52] proposed 393 

Region-based Fully Convolutional Networks ( R-FCN ) which shared 394 

the computation cost in the region classification step. R-FCN gen- 395 

erated a Position Sensitive Score Map which encoded relative posi- 396 

tion information of different classes, and used a Position Sensitive 397 

ROI Pooling layer (PSROI Pooling) to extract spatial-aware region 398 

features by encoding each relative position of the target regions. 399 

The extracted feature vectors maintained spatial information and 400 

thus the detector achieved competitive results compared to Faster 401 

R-CNN without region-wise fully connected layer operations. 402 

Another issue with Faster R-CNN was that it used a single deep 403 

layer feature map to make the final prediction. This made it diffi- 404 

cult to detect objects at different scales. In particular, it was diffi- 405 

cult to detect small objects. In DCNN feature representations, deep 406 

layer features are semantically-strong but spatially-weak, while 407 

shallow layer features are semantically-weak but spatially-strong. 408 

Lin et al. [39] exploited this property and proposed Feature Pyra- 409 

mid Networks ( FPN ) which combined deep layer features with 410 

shallow layer features to enable object detection in feature maps 411 

at different scales. The main idea was to strengthen the spatially 412 

strong shallow layer features with rich semantic information from 413 

the deeper layers. FPN achieved significant progress in detecting 414 

multi-scale objects and has been widely used in many other do- 415 

mains such as video detection [53,54] and human pose recognition 416 

[55,56] . 417 

Most instance segmentation algorithms are extended from 418 

vanilla object detection algorithms. Early methods [57–59] com- 419 

monly generated segment proposals, followed by Fast RCNN for 420 

segments classification. Later, Dai et al. [59] proposed a multi- 421 

stage algorithm named “MNC” which divided the whole detection 422 

framework into multiple stages and predicted segmentation masks 423 

from the learned bounding box proposals, which were later cat- 424 

egorized by region classifiers. These early works performed bbox 425 

and mask prediction in multiple stages. To make the whole process 426 

more flexible, He et al. [3] proposed Mask R-CNN , which predicted 427 

bounding boxes and segmentation masks in parallel based on the 428 

proposals and reported state-of-the-art results. Based on Mask R- 429 

CNN, Huang et al. [60] proposed a mask-quality aware framework, 430 
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Fig. 4. Overview of different two-stage detection frameworks for generic object detection. Red dotted rectangles denote the outputs that define the loss functions. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

named Mask Scoring R-CNN, which learned the quality of the pre- 431 

dicted masks and calibrated the misalignment between mask qual- 432 

ity and mask confidence score. 433 

Fig. 4 gives an overview of the detection frameworks for several 434 

representative two-stage detectors. 435 

3.2.2. One-stage detectors 436 

Different from two-stage detection algorithms which divide the 437 

detection pipeline into two parts: proposal generation and region 438 

classification; one-stage detectors do not have a separate stage for 439 

proposal generation (or learning a proposal generation). They typ- 440 

ically consider all positions on the image as potential objects, and 441 

try to classify each region of interest as either background or a tar- 442 

get object. 443 

One of the early successful one-stage detectors based on deep 4 4 4 

learning was developed by Sermanet et al. [61] named OverFeat . 445 

OverFeat performed object detection by casting DCNN classifier 446 

into a fully convolutional object detector. Object detection can be 447 

viewed as a ”multi-region classification” problem, and thus Over- 448 

Feat extended the original classifier into detector by viewing the 449 

last FC layers as 1x1 convolutional layers to allow arbitrary input. 450 

The classification network output a grid of predictions on each re- 451 

gion of the input to indicate the presence of an object. After iden- 452 

tifying the objects, bounding box regressors were learned to refine 453 

the predicted regions based on the same DCNN features of clas- 454 

sifier. In order to detect multi-scale objects, the input image was 455 

resized into multiple scales which were fed into the network. Fi- 456 

nally, the predictions across all the scales were merged together. 457 

OverFeat showed significant speed strength compared with RCNN 458 

by sharing the computation of overlapping regions using convolu- 459 

tional layers, and only a single pass forward through the network 460 

was required. However, the training of classifiers and regressors 461 

were separated without being jointly optimized. 462 

Later, Redmon etal. [40] developed a real-time detector called 463 

YOLO (You Only Look Once). YOLO considered object detection as 464 

a regression problem and spatially divided the whole image into 465 

fixed number of grid cells (e.g. using a 7 × 7 grid). Each cell was 466 

considered as a proposal to detect the presence of one or more ob- 467 

jects. In the original implementation, each cell was considered to 468 

contain the center of (upto) two objects. For each cell, a prediction 469 

was made which comprised the following information: whether 470 

that location had an object, the bounding box coordinates and size 471 

(width and height), and the class of the object. The whole frame- 472 

work was a single network and it omitted proposal generation step 473 

which could be optimized in an end-to-end manner. Based on a 474 

carefully designed lightweight architecture, YOLO could make pre- 475 

diction at 45 FPS, and reach 155 FPS with a more simplified back- 476 

bone. However, YOLO faced some challenges: (i) it could detect 477 

upto only two objects at a given location, which made it difficult 478 

to detect small objects and crowded objects [40] . (ii) only the last 479 

feature map was used for prediction, which was not suitable for 480 

predicting objects at multiple scales and aspect ratios. 481 

In 2016, Liu etal. proposed another one-stage detector Single- 482 

Shot Mulibox Detector ( SSD ) [42] which addressed the limitations 483 

of YOLO. SSD also divided images into grid cells, but in each grid 484 

cell, a set of anchors with multiple scales and aspect-ratios were 485 

generated to discretize the output space of bounding boxes (un- 486 

like predicting from fixed grid cells adopted in YOLO). Each anchor 487 

was refined by 4-value offsets learned by the regressors and was 488 

assigned (C + 1) categorical probabilities by the classifiers. In addi- 489 

tion, SSD predicted objects on multiple feature maps, and each of 490 

these feature maps was responsible for detecting a certain scale of 491 

objects according to its receptive fields. In order to detect large ob- 492 

jects and increase receptive fields, several extra convolutional fea- 493 

ture maps were added to the original backbone architecture. The 494 

whole network was optimized with a weighted sum of localization 495 

loss and classification loss over all prediction maps via an end-to- 496 

end training scheme. The final prediction was made by merging 497 

all detection results from different feature maps. In order to avoid 498 

huge number of negative proposals dominating training gradients, 499 

hard negative mining was used to train the detector. Intensive data 500 

augmentation was also applied to improve detection accuracy. SSD 501 

achieved comparable detection accuracy with Faster R-CNN but en- 502 

joyed the ability to do real-time inference. 503 

Without proposal generation to filter easy negative samples, the 504 

class imbalance between foreground and background is a severe 505 
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Fig. 5. Overview of different one-stage detection frameworks for generic object detection. Red rectangles denotes the outputs that define the objective functions. 

problem in one-stage detector. Lin et al. [43] proposed a one-stage 506 

detector RetinaNet which addressed class imbalance problem in a 507 

more flexible manner. RetinaNet used focal loss which suppressed 508 

the gradients of easy negative samples instead of simply discard- 509 

ing them. Further, they used feature pyramid networks to detect 510 

multi-scale objects at different levels of feature maps. Their pro- 511 

posed focal loss outperformed naive hard negative mining strategy 512 

by large margins. 513 

Redmon et al. proposed an improved YOLO version, 514 

YOLOv2 [41] which significantly improved detection performance 515 

but still maintained real-time inference speed. YOLOv2 adopted a 516 

more powerful deep convolutional backbone architecture which 517 

was pre-trained on higher resolution images from ImageNet (from 518 

224 × 224 to 448 × 448), and thus the weights learned were 519 

more sensitive to capturing fine-grained information. In addition, 520 

inspired by the anchor strategy used in SSD, YOLOv2 defined 521 

better anchor priors by k-means clustering from the training data 522 

(instead of setting manually). This helped in reducing optimizing 523 

difficulties in localization. Finally integrating with Batch Normal- 524 

ization layers [62] and multi-scale training techniques, YOLOv2 525 

achieved state-of-the-art detection results at that time. 526 

The previous approaches required designing anchor boxes man- 527 

ually to train a detector. Later a series of anchor-free object de- 528 

tectors were developed, where the goal was to predict keypoints 529 

of the bounding box, instead of trying to fit an object to an an- 530 

chor. Law and Deng proposed a novel anchor-free framework Cor- 531 

nerNet [63] which detected objects as a pair of corners. On each 532 

position of the feature map, class heatmaps, pair embeddings and 533 

corner offsets were predicted. Class heatmaps calculated the prob- 534 

abilities of being corners, and corner offsets were used to regress 535 

the corner location. And the pair embeddings served to group a 536 

pair of corners which belong to the same objects. Without rely- 537 

ing on manually designed anchors to match objects, CornerNet ob- 538 

tained significant improvement on MSCOCO datasets. Later there 539 

were several other variants of keypoint detection based one-stage 540 

detectors [64,65] . 541 

Fig. 5 gives an overview of different detection frameworks for 542 

several representative one-stage detectors. 543 

3.3. Backbone architecture 544 

R-CNN [2] showed adopting convolutional weights from models 545 

pre-trained on large scale image classification problem could pro- 546 

vide richer semantic information to train detectors and enhanced 547 

the detection performance. During the later years, this approach 548 

had become the default strategy for most object detectors. In this 549 

section, we will first briefly introduce the basic concept of deep 550 

convolutional neural networks and then review some architectures 551 

which are widely used for detection. 552 

3.3.1. Basic architecture of a CNN 553 

Deep convolutional neural network (DCNN) is a typical deep 554 

neural network and has proven extremely effective in visual un- 555 

derstanding [33,36] . Deep convolutional neural networks are com- 556 

monly composed of a sequence of convolutional layers, pooling 557 

layers, nonlinear activation layers and fully connected layers (FC 558 

layers). Convolutional layer takes an image input and convolves 559 

over it by n × n kernels to generate a feature map. The generated 560 

feature map can be regarded as a multi-channel image and each 561 

channel represents different information about the image. Each 562 

pixel in the feature map (named neuron) is connected to a small 563 

portion of adjacent neurons from the previous map, which is called 564 

the receptive field. After generating feature maps, a non-linear ac- 565 

tivation layer is applied. Pooling layers are used to summarize the 566 

signals within the receptive fields, to enlarge receptive fields as 567 

well as reduce computation cost,. 568 

With the combination of a sequence of convolutional layers, 569 

pooling layers and non-linear activation layers, the deep convo- 570 

lutional neural network is built. The whole network can be op- 571 

timized via a defined loss function by gradient-based optimiza- 572 

tion method (stochastic gradient descent [66] , Adam [67] , etc.). A 573 

typical convolutional neural network is AlexNet [33] , which con- 574 

tains five convolutional layers, three max-pooling layers and three 575 

fully connected layers. Each convolutional layer is followed by a 576 

ReLU [68] non-linear activation layer. 577 

3.3.2. CNN Backbone for object detection 578 

In this section, we will review some architectures which are 579 

widely used in object detection tasks with state-of-the-art results, 580 

such as VGG16 [34,38] , ResNet [1,52] , ResNeXt [43] and Hour- 581 

glass [63] . 582 

VGG16 [69] was developed based on AlexNet. VGG16 is com- 583 

posed of five groups of convolutional layers and three FC layers. 584 

There are two convolutional layers in the first two groups and 585 

three convolutional layers in the next three groups. Between each 586 

group, a Max Pooling layer is applied to decrease spatial dimen- 587 

sion. VGG16 showed that increasing depth of networks by stacking 588 
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convolutional layers could increase the model’s expression capabil- 589 

ity, and led to a better performance. However, increasing model 590 

depth to 20 layers by simply stacking convolutional layers led 591 

to optimization challenges with SGD. The performance declined 592 

significantly and was inferior to shallower models, even during 593 

the training stages. Based on this observation, He et al. [1] pro- 594 

posed ResNet which reduced optimization difficulties by introduc- 595 

ing shortcut connections. Here, a layer could skip the nonlinear 596 

transformation and directly pass the values to the next layer as is 597 

(thus giving us an implicit identity layer). This is given as: 598 

x l+1 = x l + f l+1 (x l , θ ) (6) 

where x l is the input feature in l -th layer and f l+1 denotes opera- 599 

tions on input x l such as convolution, normalization or non-linear 600 

activation. f l+1 (x l , θ ) is the residual function to x l , so the feature 601 

map of any deep layer can be viewed as the sum of the activa- 602 

tion of shallow layer and the residual function. Shortcut connection 603 

creates a highway which directly propagates the gradients from 604 

deep layers to shallow units and thus, significantly reduces training 605 

difficulty. With residual blocks effectively training networks, the 606 

model depth could be increased (e.g. from 16 to 152), allowing us 607 

to train very high capacity models. Later, He et al. [70] proposed 608 

a pre-activation variant of ResNet, named ResNet-v2. Their exper- 609 

iments showed appropriate ordering of the Batch Normalization 610 

[62] could further perform better than original ResNet. This sim- 611 

ple but effective modification of ResNet made it possible to suc- 612 

cessfully train a network with more than 10 0 0 layers, and still en- 613 

joyed improved performance due to the increase in depth. Huang 614 

et al. argued that although ResNet reduced the training difficulty 615 

via shortcut connection, it did not fully utilize features from previ- 616 

ous layers. The original features in shallow layers were missing in 617 

element-wise operation and thus could not be directly used later. 618 

They proposed DenseNet [71] , which retained the shallow layer 619 

features, and improved information flow, by concatenating the in- 620 

put with the residual output instead of element-wise addition: 621 

x l+1 = x l ◦ f l+1 (x l , θ ) (7) 

where ◦ denotes concatenation. Chen [72] et al. argued that in 622 

DenseNet, the majority of new exploited features from shallow 623 

layers were duplicated and incurred high computation cost. Inte- 624 

grating the advantages of both ResNet and DenseNet, they pro- 625 

pose a Dual Path Network (DPN) which divides x l channels into 626 

two parts: x d 
l 

and x r 
l 
. x d 

l 
was used for dense connection computa- 627 

tion and x r 
l 

was used for element-wise summation, with unshared 628 

residual learning branch f d 
l+1 

and f r 
l+1 

. The final result was the con- 629 

catenated output of the two branches: 630 

x l+1 = (x r l + f r l+1 (x r l , θ
r )) ◦ (x d l ◦ f d l+1 (x d l , θ

d )) (8) 

Based on ResNet, Xie et al. [73] proposed ResNeXt which con- 631 

siderably reduced computation and memory cost while main- 632 

taining comparable classification accuracy. ResNeXt adopted group 633 

convolution layers [33] which sparsely connects feature map chan- 634 

nels to reduce computation cost. By increasing group number to 635 

keep computation cost consistent to the original ResNet, ResNeXt 636 

captures richer semantic feature representation from the train- 637 

ing data and thus improves backbone accuracy. Later, Howard 638 

et al. [74] set the coordinates equal to number of channels of each 639 

feature map and developed MobileNet. MobileNet significantly re- 640 

duced computation cost as well as number of parameters without 641 

significant loss in classification accuracy. This model was specifi- 642 

cally designed for usage on a mobile platform. 643 

In addition to increasing model depth, some effort s explored 644 

benefits from increasing model width to improve the learning ca- 645 

pacity. Szegedy et al. proposed GoogleNet with an inception mod- 646 

ule [75] which applied different scale convolution kernels (1 × 1, 647 

3 × 3 and 5 × 5) on the same feature map in a given layer. This 648 

way it captured multi-scale features and summarized these fea- 649 

tures together as an output feature map. Better versions of this 650 

model were developed later with different design of choice of con- 651 

volution kernels [76] , and introducing residual blocks [77] . 652 

The network structures introduced above were all designed 653 

for image classification. Typically these models trained on Ima- 654 

geNet are adopted as initialization of the model used for object 655 

detection. However, directly applying this pre-trained model from 656 

classification to detection is sub-optimal due to a potential con- 657 

flict between classification and detection tasks. Specifically, (i) 658 

classification requires large receptive fields and wants to maintain 659 

spatial invariance. Thus multiple downsampling operation (such 660 

as pooling layer) are applied to decrease feature map resolution. 661 

The feature maps generated are low-resolution and spatially 662 

invariant and have large receptive fields. However, in detection, 663 

high-resolution spatial information is required to correctly local- 664 

ize objects; and (ii) classification makes predictions on a single 665 

feature map, while detection requires feature maps with multiple 666 

representations to detect objects at multiple scales. To bridge 667 

the difficulties between the two tasks, Li et al. introduced Det- 668 

Net [78] which was designed specifically for detection. DetNet 669 

kept high resolution feature maps for prediction with dilated 670 

convolutions to increase receptive fields. In addition, DetNet de- 671 

tected objects on multi-scale feature maps, which provided richer 672 

information. DetNet was pre-trained on large scale classification 673 

dataset while the network structure was designed for detection. 674 

Hourglass Network [79] is another architecture, which was not 675 

designed specifically for image classification. Hourglass Network 676 

first appeared in human pose recognition task [79] , and was a 677 

fully convolutional structure with a sequence of hourglass mod- 678 

ules. Hourglass module first downsampled the input image via a 679 

sequence of convolutional layer or pooling layer, and upsampled 680 

the feature map via deconvolutional operation. To avoid informa- 681 

tion loss in downsampling stage, skip connection were used be- 682 

tween downsampling and upsampling features. Hourglass mod- 683 

ule could capture both local and global information and thus was 684 

very suitable for object detection. Currently Hourglass Network is 685 

widely used in state-of-the-art detection frameworks [63–65] . 686 

3.4. Proposal generation 687 

Proposal generation plays a very important role in the object 688 

detection framework. A proposal generator generates a set of rect- 689 

angle bounding boxes, which are potentially objects. These propos- 690 

als are then used for classification and localization refinement. We 691 

categorize proposal generation methods into four categories: tra- 692 

ditional computer vision methods, anchor-based supervised learn- 693 

ing methods, keypoint based methods and other methods. Notably, 694 

both one-stage detectors and two-stage detectors generate propos- 695 

als, the main difference is two-stage detectors generates a sparse 696 

set of proposals with only foreground or background information, 697 

while one-stage detectors consider each region in the image as a 698 

potential proposal, and accordingly estimates the class and bound- 699 

ing box coordinates of potential objects at each location. 700 

3.4.1. Traditional computer vision methods 701 

These methods generate proposals in images using traditional 702 

computer vision methods based on low-level cues, such as edges, 703 

corners, color, etc. These techniques can be categorized into three 704 

principles: (i) computing the ‘objectness score’ of a candidate box; 705 

(ii) merging super-pixels from original images; (iii) generating mul- 706 

tiple foreground and background segments; 707 

Objectness Score based methods predict an objectness score of 708 

each candidate box measuring how likely it may contain an ob- 709 

ject. Arbelaez et al. [80] assigned objectness score to proposals 710 

by classification based on visual cues such as color contrast, edge 711 
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density and saliency. Rahtu et al. [81] revisited the idea of Arbe- 712 

laez et al. [80] and introduced a more efficient cascaded learning 713 

method to rank the objectness score of candidate proposals. 714 

Superpixels merging is based on merging superpixels gener- 715 

ated from segmentation results. Selective Search [45] was a pro- 716 

posal generation algorithm based on merging super-pixels. It com- 717 

puted the multiple hierarchical segments generated by segmenta- 718 

tion method [82] , which were merged according to their visual fac- 719 

tors (color, areas, etc.), and finally bounding boxes were placed on 720 

the merged segments. Manen et al. [83] proposed a similar idea 721 

to merge superpixels. The difference was that the weight of the 722 

merging function was learned and the merging process was ran- 723 

domized. Selective Search is widely used in many detection frame- 724 

works due to its efficiency and high recall compared to other tra- 725 

ditional methods. 726 

Seed segmentation starts with multiple seed regions, and for 727 

each seed, foreground and background segments are generated. To 728 

avoid building up hierarchical segmentation, CPMC [84] generated 729 

a set of overlapping segments initialized with diverse seeds. Each 730 

proposal segment was the solution of a binary (foreground or back- 731 

ground) segmentation problem. Enreds and Hoiem [85] combined 732 

the idea of Selective Search [45] and CPMC [84] . It started with 733 

super-pixels and merged them with new designed features. These 734 

merged segments were used as seeds to generate larger segments, 735 

which was similar to CPMC. However, producing high quality seg- 736 

mentation masks is very time-consuming and it’s not applicable to 737 

large scale datasets. 738 

The primary advantage of these traditional computer vision 739 

methods is that they are very simple and can generate propos- 740 

als with high recall (e.g. on medium scale datasets such as Pascal 741 

VOC). However, these methods are mainly based on low level vi- 742 

sual cues such as color or edges. They cannot be jointly optimized 743 

with the whole detection pipeline. Thus they are unable to exploit 744 

the power of large scale datasets to improve representation learn- 745 

ing. On challenging datasets such as MSCOCO [86] , traditional com- 746 

puter vision methods struggled to generate high quality proposals 747 

due to these limitations. 748 

3.4.2. Anchor-based methods 749 

One large family of supervised proposal generators is anchor- 750 

based methods. They generate proposals based on pre-defined an- 751 

chors. Ren et al. proposed Region Proposal Network (RPN) [34] to 752 

generate proposals in a supervised way based on deep convolu- 753 

tional feature maps. The network slid over the entire feature map 754 

using 3 × 3 convolution filters. For each position, k anchors (or ini- 755 

tial estimates of bounding boxes) of varying size and aspect ra- 756 

tios were considered. These sizes and ratios allowed for match- 757 

ing objects at different scales in the entire image. Based on the 758 

ground truth bonding boxes, the object locations were matched 759 

with the most appropriate anchors to obtain the supervision sig- 760 

nal for the anchor estimation. A 256 −dimensional feature vec- 761 

tor was extracted from each anchor and was fed into two sibling 762 

branches - classification layer and regression layer. Classification 763 

branch was responsible for modeling objectness score while re- 764 

gression branch encoded four real-values to refine location of the 765 

bounding box from the original anchor estimation. Based on the 766 

ground truth, each anchor was predicted to either be an object, 767 

or just background by the classification branch (See Fig. 6 ). Later, 768 

SSD [42] adopted a similar idea of anchors in RPN by using multi- 769 

scale anchors to match objects. The main difference was that SSD 770 

assigned categorical probabilities to each anchor proposal, while 771 

RPN first evaluated whether the anchor proposal was foreground 772 

or background and performed the categorical classification in the 773 

next stage. 774 

Despite promising performance, the anchor priors are manu- 775 

ally designed with multiple scales and aspect ratios in a heuris- 776 

Fig. 6. Diagram of RPN [34] . Each position of the feature map connects with a slid- 

ing windows, followed with two sibling branches. 

tic manner. These design choices may not be optimal, and dif- 777 

ferent datasets would require different anchor design strategies. 778 

Many efforts have been made to improve the design choice of an- 779 

chors. Zhang et al. proposed Single Shot Scale-invariant Face De- 780 

tector (S3FD) [87] based on SSD with carefully designed anchors to 781 

match the objects. According to the effective receptive field [88] of 782 

different f eature maps, different anchor priors were designed. Zhu 783 

et al. [89] introduced an anchor design method for matching small 784 

objects by enlarging input image size and reducing anchor strides. 785 

Xie et al. proposed Dimension-Decomposition Region Proposal Net- 786 

work (DeRPN) [90] which decomposed the dimension of anchor 787 

boxes based on RPN. DeRPN used an anchor string mechanism to 788 

independently match objects width and height. This helped match 789 

objects with large scale variance and reduced the searching space. 790 

Ghodrati et al. developed DeepProposals [91] which pre- 791 

dicted proposals on the low-resolution deeper layer feature map. 792 

These were then projected back onto the high-resolution shal- 793 

low layer feature maps, where they are further refined. Redmon 794 

et al. [41] designed anchor priors by learning priors from the train- 795 

ing data using k-means clustering. Later, Zhang et al. introduced 796 

Single-Shot Refinement Neural Network (RefineDet) [92] which re- 797 

fined the manually defined anchors in two steps. In the first step, 798 

RefineDet learned a set of localization offsets based on the orig- 799 

inal hand-designed anchors and these anchors were refined by 800 

the learned offsets. In the second stage, a new set of localization 801 

offsets were learned based on the refined anchors from the first 802 

step for further refinement. This cascaded optimization framework 803 

significantly improved the anchor quality and final prediction ac- 804 

curacy in a data-driven manner. Cai et al. proposed Cascade R- 805 

CNN [49] which adopted a similar idea as RefineDet by refining 806 

proposals in a cascaded way. Yang et al. [93] modeled anchors 807 

as functions implemented by neural networks which was com- 808 

puted from customized anchors. Their method MetaAnchor showed 809 

comprehensive improvement compared to other manually defined 810 

methods but the customized anchors were still designed manually. 811 

3.4.3. Keypoints-based methods 812 

Another proposal generation approach is based on keypoint 813 

detection, which can be divided into two families: corner-based 814 

methods and center-based methods. Corner-based methods predict 815 

bounding boxes by merging pairs of corners learned from the fea- 816 

ture map. Denet [94] reformulated the object detection problem in 817 

a probabilistic way. For each point on the feature map, Denet mod- 818 

eled the distribution of being one of the 4 corner types of objects 819 

(top-left, top-right, bottom-left, bottom-right), and applied a naive 820 

bayesian classifiers over each corner of the objects to estimate the 821 

confidence score of a bounding box. This corner-based algorithm 822 
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eliminated the design of anchors and became a more effective 823 

method to produce high quality proposals. Later based on Denet, 824 

Law and Deng proposed CornerNet [63] which directly modeled 825 

categorical information on corners. CornerNet modeled informa- 826 

tion of top-left and bottom-right corners with novel feature em- 827 

bedding methods and corner pooling layer to correctly match key- 828 

points belonging to the same objects, obtaining state-of-the-art re- 829 

sults on public benchmarks. For center-based methods , the probabil- 830 

ity of being the center of the objects is predicted on each position 831 

of the feature map, and the height and width are directly regressed 832 

without any anchor priors. Zhu et al. [95] presented a feature- 833 

selection-anchor-free (FSAF) framework which could be plugged 834 

into one-stage detectors with FPN structure. In FSAF, an online 835 

feature selection block is applied to train multi-level center-based 836 

branches attached in each level of the feature pyramid. During 837 

training, FSAF dynamically assigned each object to the most suit- 838 

able feature level to train the center-based branch. Similar to FSAF, 839 

Zhou et al. proposed a new center-based framework [64] based 840 

on a single Hourglass network [63] without FPN structure. Fur- 841 

thermore, they applied center-based method into higher-level 842 

problems such as 3D-detection and human pose recognition, and 843 

all achieved state-of-the-art results. Duan et al. [65] proposed 844 

CenterNet, which combined the idea of center-based methods and 845 

corner-based methods. CenterNet first predicted bounding boxes 846 

by pairs of corners, and then predicted center probabilities of the 847 

initial prediction to reject easy negatives. CenterNet obtained sig- 848 

nificant improvements compared with baselines. These anchor-free 849 

methods form a promising research direction in the future. 850 

3.4.4. Other methods 851 

There are some other proposal generation algorithms which are 852 

not based on keypoints or anchors but also offer com petitive per- 853 

formances. Lu et al. proposed AZnet [96] which automatically fo- 854 

cused on regions of high interest. AZnet adopted a search strat- 855 

egy that adaptively directed computation resources to sub-regions 856 

which were likely contain objects. For each region, AZnet predicted 857 

two values: zoom indicator and adjacency scores. Zoom indicator 858 

determined whether to further divide this region which may con- 859 

tain smaller objects and adjacency scores denoted its objectness. 860 

The starting point was the entire image and each divided sub- 861 

region is recursively processed in this way until the zoom indicator 862 

is too small. AZnet was better at matching sparse and small objects 863 

compared to RPN’s anchor-object matching approach. 864 

3.5. Feature representation learning 865 

Feature Representation Learning is a critical component in the 866 

whole detection framework. Target objects lie in complex environ- 867 

ments and have large variance in scale and aspect ratios. There is 868 

a need to train a robust and discriminative feature embedding of 869 

objects to obtain a good detection performance. In this section, we 870 

introduce feature representation learning strategies for object de- 871 

tection. Specifically, we identify three categories: multi-scale fea- 872 

ture learning, contextual reasoning, and deformable feature learn- 873 

ing. 874 

3.5.1. Multi-scale feature learning 875 

Typical object detection algorithms based on deep convolu- 876 

tional networks such as Fast R-CNN [38] and Faster R-CNN [34] use 877 

only a single layer’s feature map to detect objects. However, de- 878 

tecting objects across large range of scales and aspect ratios is 879 

quite challenging on a single feature map. Deep convolutional net- 880 

works learn hierarchical features in different layers which cap- 881 

ture different scale information. Specifically, shallow layer features 882 

with spatial-rich information have higher resolution and smaller 883 

receptive fields and thus are more suitable for detecting small ob- 884 

jects, while semantic-rich features in deep layers are more robust 885 

to illumination, translation and have larger receptive fields (but 886 

coarse resolutions), and are more suitable for detecting large ob- 887 

jects. When detecting small objects, high resolution representa- 888 

tions are required and the representation of these objects may not 889 

even be available in the deep layer features, making small object 890 

detection difficult. Some techniques such as dilated/atrous convolu- 891 

tions [52,97] were proposed to avoid downsampling, and used the 892 

high resolution information even in the deeper layers. At the same 893 

time, detecting large objects in shallow layers are also non-optimal 894 

without large enough receptive fields. Thus, handling feature scale 895 

issues has become a fundamental research problem within object 896 

detection. There are four main paradigms addressing multi-scale 897 

feature learning problem: Image Pyramid, Prediction Pyramid, In- 898 

tegrated Features and Feature Pyramid. These are briefly illustrated 899 

in the Fig. 7 . 900 

Image pyramid : An intuitive idea is to resize input images into 901 

a number of different scales (Image Pyramid) and to train mul- 902 

tiple detectors, each of which is responsible for a certain range 903 

of scales [98–101] . During testing, images are resized to different 904 

scales followed by multiple detectors and the detection results are 905 

merged. This can be computationally expensive. Liu et al. [101] first 906 

learned a light-weight scale-aware network to resize images such 907 

that all objects were in a similar scale. This was followed by learn- 908 

ing a single scale detector. Singh et. al. [98] conducted compre- 909 

hensive experiments on small object detection. They argued that 910 

learning a single scale-robust detector to handle all scale objects 911 

was much more difficult than learning scale-dependent detectors 912 

with image pyramids. In their work, they proposed a novel frame- 913 

work Scale Normalization for Image Pyramids (SNIP) [98] which 914 

trained multiple scale-dependent detectors and each of them was 915 

responsible for a certain scale objects. 916 

Integrated features : Another approach is to construct a single 917 

feature map by combining features in multiple layers and making 918 

final predictions based on the new constructed map [50,51,102– 919 

105] . By fusing spatially rich shallow layer features and semantic- 920 

rich deep layer features, the new constructed features contain rich 921 

information and thus can detect objects at different scales. These 922 

combinations are commonly achieved by using skip connections 923 

[1] . Feature normalization is required as feature norms of different 924 

layers have a high variance. Bell et al. proposed Inside-Outside 925 

Network (ION) [51] which cropped region features from differ- 926 

ent layers via ROI Pooling [38] , and combined these multi-scale 927 

region features for the final prediction. Kong et. al. proposed 928 

HyperNet [50] which adopted a similar idea as IoN. They carefully 929 

designed high resolution hyper feature maps by integrating inter- 930 

mediate and shallow layer features to generate proposals and de- 931 

tect objects. Deconvolutional layers were used to up-sample deep 932 

layer feature maps and batch normalization layers were used to 933 

normalize input blobs in their work. The constructed hyper feature 934 

maps could also implicitly encode contextual information from 935 

different layers. Inspired by fine-grained classification algorithms 936 

which integrate high-order representation instead of exploiting 937 

simple first-order representations of object proposals, Wang et al. 938 

proposed a novel framework Multi-scale Location-aware Kernel 939 

Representation (MLKP) [103] which captured high-order statistics 940 

of proposal features and generated more discriminative feature 941 

representations efficiently. The combined feature representation 942 

was more descriptive and provides both semantic and spatial 943 

information for both classification and localization. 944 

Prediction pyramid : Liu et al.’s SSD [42] combined coarse 945 

and fine features from multiple layers together. In SSD, predic- 946 

tions were made from multiple layers, where each layer was 947 

responsible for a certain scale of objects. Later, many efforts 948 

[106–108] followed this principle to detect multi-scale objects. 949 
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Fig. 7. Four paradigms for multi-scale feature learning. Top Left: Image Pyramid , which learns multiple detectors from different scale images; Top Right: Prediction Pyramid , 

which predicts on multiple feature maps; Bottom Left: Integrated Features , which predicts on single feature map generated from multiple features; Bottom Right: Feature 

Pyramid which combines the structure of Prediction Pyramid and Integrated Features . 

Yang et al. [100] also exploited appropriate feature maps to gen- 950 

erate certain scale of object proposals and these feature maps 951 

were fed into multiple scale-dependent classifiers to predict ob- 952 

jects. In their work, cascaded rejection classifiers were learned 953 

to reject easy background proposals in early stages to accelerate 954 

detection speed. Multi-scale Deep Convolutional Neural Network 955 

(MSCNN) [106] applied deconvolutional layers on multiple feature 956 

maps to improve their resolutions, and later these refined feature 957 

maps were used to make predictions. Liu et al. proposed a Recep- 958 

tive Field Block Net (RFBNet) [108] to enhance the robustness and 959 

receptive fields via a receptive field block (RFB block). RFB block 960 

adopted similar ideas as the inception module [75] which cap- 961 

tured features from multiple scale and receptive fields via multi- 962 

ple branches with different convolution kernels and finally merged 963 

them together. 964 

Feature pyramid : To combine the advantage of Integrated Fea- 965 

tures and Prediction Pyramid, Lin et al. proposed Feature Pyramid 966 

Network (FPN) [39] which integrated different scale features 967 

with lateral connections in a top-down fashion to build a set 968 

of scale invariant feature maps, and multiple scale-dependent 969 

classifiers were learned on these feature pyramids. Specifically, 970 

the deep semantic-rich features were used to strengthen the shal- 971 

low spatially-rich features. These top-down and lateral features 972 

were combined by element-wise summation or concatenation, 973 

with small convolutions reducing the dimensions. FPN showed 974 

significant improvement in object detection, as well as other 975 

applications, and achieved state-of-the art results in learning 976 

multi-scale features. Many variants of FPN were later developed 977 

[92,109,109–119] , with modifications to the feature pyramid block 978 

(see Fig. 8 ). Kong et al. [120] and Zhang et. al. [92] built scale in- 979 

variant feature maps with lateral connections. Different from FPN 980 

which generated region proposals followed by categorical classi- 981 

fiers, their methods omitted proposal generation and thus were 982 

more efficient than original FPN. Ren et al. [109] and Jeong et al. 983 

[110] developed a novel structure which gradually and selectively 984 

encoded contextual information between different layer features. 985 

Inspired by super resolution tasks [121,122] , Zhou et al. [111] de- 986 

Fig. 8. General framework for feature combination. Top-down features are 2 times 

up-sampled and fuse with bottom-up features. The fuse methods can be element- 

wise sum, multiplication, concatenation and so on. Convolution and normalization 

layers can be inserted in to this general framework to enhance semantic informa- 

tion and reduce memory cost. 

veloped high resolution feature maps using a novel transform 987 

block which explicitly explored the inter-scale consistency nature 988 

across multiple detection scales. 989 

3.5.2. Region feature encoding 990 

For two-stage detectors, region feature encoding is a critical 991 

step to extract features from proposals into fixed length feature 992 

vectors. In R-CNN, Girshick et al. [2] cropped region proposals from 993 

the whole image and resized the cropped regions into fixed sized 994 

patches (224 × 224) via bilinear interpolation, followed by a deep 995 

convolution feature extractor. Their method encoded high resolu- 996 

tion region features but the computation was expensive. 997 

Later Girshick et al. [38] and Ren [34] proposed ROI Pooling 998 

layer to encode region features. ROI Pooling divided each region 999 

into n × n cells (e.g. 7 × 7 by default) and only the neuron with the 10 0 0 

maximum signal would go ahead in the feedforward stage. This 1001 

is similar to max-pooling, but across (potentially) different sized 1002 

regions. ROI Pooling extracted features from the down-sampled 1003 
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feature map and as a result struggled to handle small objects. 1004 

Dai [59] proposed ROI Warping layer which encoded region fea- 1005 

tures via bilinear interpolation. Due to the downsampling opera- 1006 

tion in DCNN, there can be a misalignment of the object posi- 1007 

tion in the original image and the downsampled feature maps, 1008 

which RoI Pooling and RoI Warping layers are not able to han- 1009 

dle. Instead of quantizing grids border as ROI Warping and ROI 1010 

Pooling do, He et al. [3] proposed ROI Align layer which ad- 1011 

dressed the quantization issue by bilinear interpolation at fraction- 1012 

ally sampled positions within each grid. Based on ROI Align, Jiang 1013 

et al. [123] presented Precise ROI Pooing (PrROI Pooling), which 1014 

avoided any quantization of coordinates and had a continuous gra- 1015 

dient on bounding box coordinates. 1016 

In order to enhance spatial information of the downsampled re- 1017 

gion features, Dai et al. [52] proposed Position Sensitive ROI Pooing 1018 

(PSROI Pooling) which kept relative spatial information of down- 1019 

sampled features. Each channel of generated region feature map 1020 

only corresponded to a subset channels of input region accord- 1021 

ing to its relative spatial position. Based on PSROI Pooling, Zhai 1022 

et al. [124] presented feature selective networks to learn robust 1023 

region features by exploiting disparities among sub-region and as- 1024 

pect ratios. The proposed network encoded sub-region and aspect 1025 

ratio information which were selectively pooled to refine initial re- 1026 

gion features by a light-weight head. 1027 

Later, more algorithms were proposed to well encode re- 1028 

gion features from different viewpoints. Zhu et al. proposed Cou- 1029 

pleNet [125] which extracted region features by combining outputs 1030 

generated from both ROI Pooling layer and PSROI Pooling layer. 1031 

ROI Pooling layer extracted global region information but struggled 1032 

for objects with high occlusion while PSROI Pooling layer focused 1033 

more on local information. CoupleNet enhanced features generated 1034 

from ROI Pooling and PSROI Pooling by element-wise summation 1035 

and generated more powerful features. Later Dai et al. proposed 1036 

Deformable ROI Pooling [97] which generalized aligned RoI pooling 1037 

by learning an offset for each grid and adding it to the grid center. 1038 

The sub-grid start with a regular ROI Pooling layer to extract ini- 1039 

tial region features and the extracted features were used to regress 1040 

offset by an auxiliary network. Deformable ROI Pooling can auto- 1041 

matically model the image content without being constrained by 1042 

fixed receptive fields. 1043 

3.5.3. Contextual reasoning 1044 

Contextual information plays an important role in object de- 1045 

tection. Objects often tend to appear in specific environments and 1046 

sometimes also coexist with other objects. For each example, birds 1047 

commonly fly in the sky. Effectively using contextual information 1048 

can help improve detection performance, especially for detecting 1049 

objects with insufficient cues (small object, occlusion etc.) Learn- 1050 

ing the relationship between objects with their surrounding con- 1051 

text can improve detector’s ability to understand the scenario. For 1052 

traditional object detection algorithms, there have been several ef- 1053 

forts exploring context [126] , but for object detection based on 1054 

deep learning, context has not been extensively explored. This is 1055 

because convolutional networks implicitly already capture contex- 1056 

tual information from hierarchical feature representations. How- 1057 

ever, some recent efforts [1,3,3,59,106,127–131] still try to exploit 1058 

contextual information. Some works [132] have even shown that in 1059 

some cases context information may even harm the detection per- 1060 

formance. In this section we review contextual reasoning for object 1061 

detection from two aspects: global context and region context . 1062 

Global context reasoning refers to learning from the context in 1063 

the whole image. Unlike traditional detectors which attempt to 1064 

classify specific regions in the image as objects, the idea here is 1065 

to use the contextual information (i.e., information from the rest 1066 

of the image) to classify a particular region of interest. For exam- 1067 

ple, detecting a baseball ball from an image can be challenging for 1068 

a traditional detector (as it may be confused with balls from other 1069 

sports); but if the contextual information from the rest of the im- 1070 

age is used (e.g. baseball field, players, bat), it becomes easier to 1071 

identify the baseball ball object. 1072 

Some representative efforts include ION [51] , DeepId [127] and 1073 

improved version of Faster R-CNN [1] . In ION, Bell et al. used re- 1074 

current neural network to encode contextual information across 1075 

the whole image from four directions. Ouyang et al. [127] learned 1076 

a categorical score for each image which is used as contex- 1077 

tual features concatenated with the object detection results. He 1078 

et al. [1] extracted feature embedding of the entire image and con- 1079 

catenate it with region features to improve detection results. In ad- 1080 

dition, some methods [3,59,129,133–136] exploit global contextual 1081 

information via semantic segmentation. Due to precise pixel-level 1082 

annotation, segmentation feature maps capture strong spatial in- 1083 

formation. He et al. [3] and Dai et al. [59] learn unified instance 1084 

segmentation framework and optimize the detector with pixel- 1085 

level supervision. They jointly optimized detection and segmen- 1086 

tation objectives as a multi-task optimization. Though segmenta- 1087 

tion can significantly improve detection performance, obtaining the 1088 

pixel-level annotation is very expensive. Zhao et al. [133] opti- 1089 

mized detectors with pseudo segmentation annotation and showed 1090 

promising results. Zhang et al.’s work Detection with Enriched Se- 1091 

mantics (DES) [134] , introduced contextual information by learn- 1092 

ing a segmentation mask without segemtation annotations. It also 1093 

jointly optimized object detection and segmentation objectives and 1094 

enriched original feature map with a more discriminative feature 1095 

map. 1096 

Region Context Reasoning encodes contextual information sur- 1097 

rounding regions and learns interactions between the objects with 1098 

their surrounding area. Directly modeling different locations and 1099 

categories objects relations with the contextual is very challenging. 1100 

Chen et al. proposed Spatial Memory Network (SMN) [130] which 1101 

introduced a spatial memory based module. The spatial memory 1102 

module captured instance-level contexts by assembling object in- 1103 

stances back into a pseudo “image” representations which were 1104 

later used for object relations reasoning. Liu et al. proposed Struc- 1105 

ture Inference Net (SIN) [137] which formulated object detection as 1106 

a graph inference problem by considering scene contextual infor- 1107 

mation and object relationships. In SIN, each object was treated as 1108 

a graph node and the relationship between different objects were 1109 

regarded as graph edges. Hu et al. [138] proposed a lightweight 1110 

framework relation network which formulated the interaction be- 1111 

tween different objects between their appearance and image loca- 1112 

tions. The new proposed framework did not need additional anno- 1113 

tation and showed improvements in object detection performance. 1114 

Based on Hu et al., Gu et al. [139] proposed a fully learnable ob- 1115 

ject detector which proposed a general viewpoint that unified ex- 1116 

isting region feature extraction methods. Their proposed method 1117 

removed heuristic choices in ROI pooling methods and automati- 1118 

cally select the most significant parts, including contexts beyond 1119 

proposals. Another method to encode contextual information is to 1120 

implicitly encode region features by adding image features sur- 1121 

rounding region proposals and a large number of approaches have 1122 

been proposed based on this idea [106,131,140–143] . In addition 1123 

to encode features from region proposals, Gidaris et al. [131] ex- 1124 

tracted features from a number of different sub-regions of the 1125 

original object proposals (border regions, central regions, contex- 1126 

tual regions etc.) and concatenated these features with the origi- 1127 

nal region features. Similar to their method, [106] extracted local 1128 

contexts by enlarging the proposal window size and concatenat- 1129 

ing these features with the original ones. Zeng et al. [142] pro- 1130 

posed Gated Bi-Directional CNN (GBDNet) which extracted fea- 1131 

tures from multi-scale subregions. Notably, GBDNet learned a 1132 

gated function to control the transmission of different region in- 1133 
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formation because not all contextual information is helpful for 1134 

detection. 1135 

3.5.4. Deformable feature learning 1136 

A good detector should be robust to nonrigid deformation 1137 

of objects. Before the deep learning era, Deformable Part based 1138 

Models (DPMs) [28] had been successfully used for object de- 1139 

tection. DPMs represented objects by multiple component parts 1140 

using a deformable coding method, making the detector robust 1141 

to nonrigid object transformation. In order to enable detectors 1142 

based on deep learning to model deformations of object parts, 1143 

many researchers have developed detection frameworks to explic- 1144 

itly model object parts [97,127,144,145] . DeepIDNet [127] developed 1145 

a deformable-aware pooling layer to encode the deformation infor- 1146 

mation across different object categories. Dai et al. [97] and Zhu 1147 

et al. [144] designed deformable convolutional layers which auto- 1148 

matically learned the auxiliary position offsets to augment infor- 1149 

mation sampled in regular sampling locations of the feature map. 1150 

4. Learning strategy 1151 

In contrast to image classification, object detection requires op- 1152 

timizing both localization and classification tasks, which makes it 1153 

more difficult to train robust detectors. In addition, there are sev- 1154 

eral issues that need to be addressed, such as imbalance sampling, 1155 

localization, acceleration etc. Thus there is a need to develop inno- 1156 

vative learning strategies to train effective and efficient detectors. 1157 

In this section, we review some of the learning strategies for object 1158 

detection. 1159 

4.1. Training stage 1160 

In this section, we review the learning strategies for training 1161 

object detectors. Specifically we discuss, data augmentation, imbal- 1162 

ance sampling, cascade learning, localization refinement and some 1163 

other learning strategies. 1164 

4.1.1. Data augmentation. 1165 

Data augmentation is important for nearly all deep learning 1166 

methods as they are often data-hungry and more training data 1167 

leads to better results. In object detection, in order to increase 1168 

training data as well as generate training patches with multiple vi- 1169 

sual properties, Horizontal flips of training images is used in train- 1170 

ing Faster R-CNN detector [38] . A more intensive data augmenta- 1171 

tion strategy is used in one-stage detectors including rotation, ran- 1172 

dom crops, expanding and color jittering [42,106,146] . This data 1173 

augmentation strategy has shown significant improvement in de- 1174 

tection accuracy. 1175 

4.1.2. Imbalance sampling 1176 

In object detection, imbalance of negative and positive samples 1177 

is a critical issue. That is, most of the regions of interest estimated 1178 

as proposals are in fact just background images. Very few of them 1179 

are positive instances (or objects). This results in problem of imbal- 1180 

ance while training detectors. Specifically, two issues arise, which 1181 

need to be addressed: class imbalance and difficulty imbalance. 1182 

The class imbalance issue is that most candidate proposals belong 1183 

to the background and only a few of proposals contain objects. This 1184 

results in the background proposals dominating the gradients dur- 1185 

ing training. The difficulty imbalance is closely related to the first 1186 

issue, where due to the class imbalance, it becomes much easier 1187 

to classify most of the background proposals easily, while the ob- 1188 

jects become harder to classify. A variety of strategies have been 1189 

developed to tackle the class imbalance issue. Two-stage detectors 1190 

such as R-CNN and Fast R-CNN will first reject majority of nega- 1191 

tive samples and keep 20 0 0 proposals for further classification. In 1192 

Fast R-CNN [38] , negative samples were randomly sampled from 1193 

these 2k proposals and the ratio of positive and negative was fixed 1194 

as 1:3 in each mini-batch, to further reduce the adverse effects of 1195 

class imbalance. Random sample can address class imbalance issue 1196 

but are not able to fully utilize information from negative propos- 1197 

als. Some negative proposals may contain rich context information 1198 

about the images, and some hard proposals can help to improve 1199 

detection accuracy. To address this, Liu et al. [42] proposed hard 1200 

negative sampling strategy which fixed the foreground and back- 1201 

ground ratio but sampled most difficult negative proposals for up- 1202 

dating the model. Specifically, negative proposals with higher clas- 1203 

sification loss were selected for training. 1204 

To address difficulty imbalance, most sampling strategies are 1205 

based on carefully designed loss functions. For obejct detection, a 1206 

multi-class classifier is learned over C + 1 categories (C target cate- 1207 

gories plus one background category). Assume the region is labeled 1208 

with ground truth class u , and p is the output discrete probability 1209 

distribution over C + 1 classes ( p = { p 0 , . . . , p C } ). The loss function 1210 

is given by: 1211 

L cls (p, u ) = − log p u (9) 

Lin et al. proposed a novel focal loss [43] which suppressed signals 1212 

from easy samples. Instead of discarding all easy samples, they as- 1213 

signed an importance weight to each sample w.r.t its loss value 1214 

as: 1215 

L FL = −α(1 − p u ) 
γ log (p u ) (10) 

where α and γ were parameters to control the importance 1216 

weight. The gradient signals of easy samples got suppressed which 1217 

led the training process to focus more on hard proposals. Li 1218 

et al. [147] adopt a similar idea from focal loss and propose a novel 1219 

gradient harmonizing mechanism (GHM). The new proposed GHM 1220 

not only suppressed easy proposals but also avoided negative im- 1221 

pact of outliers. Shrivastava et al. [148] proposed an online hard 1222 

example mining strategy which was based on a similar principle 1223 

as Liu et al.’s SSD [42] to automatically select hard examples for 1224 

training. Different from Liu et al., online hard negative mining only 1225 

considered difficulty information but ignored categorical informa- 1226 

tion, which meant the ratio of foreground and background was not 1227 

fixed in each mini-batch. They argued that difficult samples played 1228 

a more important role than class imbalance in object detection 1229 

task. 1230 

4.1.3. Localization refinement 1231 

An object detector must provide a tight localization prediction 1232 

(bbox or mask) for each object. To do this, many effort s refine the 1233 

preliminary proposal prediction to improve the localization. Pre- 1234 

cise localization is challenging because predictions are commonly 1235 

focused on the most discriminative part of the objects, and not 1236 

necessarily the region containing the object. In some scenarios, the 1237 

detection algorithms are required to make high quality predictions 1238 

(high IoU threshold) See Fig. 9 for an illustration of how a detec- 1239 

tor may fail in a high IoU threshold regime. A general approach for 1240 

localization refinement is to generate high quality proposals (See 1241 

Section 3.4 ). In this section, we will review some other methods 1242 

for localization refinement. In R-CNN framework, the L-2 auxiliary 1243 

bounding box regressors were learned to refine localizations, and 1244 

in Fast R-CNN, the smooth L1 regressors were learned via an end- 1245 

to-end training scheme as: 1246 

L reg (t c , v ) = 

∑ 

i ∈ { x,y,w,h } 
SmoothL1 (t c i − v i ) (11) 

1247 

SmoothL1 (x ) = 

{
0 . 5 x 2 if | x | < 1 

| x | − 0 . 5 otherwise 
(12) 

where the predicted offset is given by t c = (t c x , t 
c 
y , t 

c 
w 

, t c 
h 
) for each 1248 

target class, and v denotes ground truth of object bounding 1249 
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Fig. 9. Example of failure case of detection in high IoU threshold. Purple box is 

ground truth and yellow box is prediction. In low IoU requirement scenario, this 

prediction is correct while in high IoU threshold, it’s a false positive due to insuf- 

ficient overlap with objects. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

boxes( v = (v x , v y , v w 

, v h ) ). x, y, w, h denote bounding box center, 1250 

width and height respectively. 1251 

Beyond the default localization refinement, some methods 1252 

learn auxiliary models to further refine localizations. Gidaris 1253 

et al. [131] introduced an iterative bounding box regression 1254 

method, where an R-CNN was applied to refine learned pre- 1255 

dictions. Here the predictions were refined multiple times. Gi- 1256 

daris et al. [149] proposed LocNet which modeled the distribution 1257 

of each bounding box and refined the learned predictions. Both 1258 

these approaches required a separate component in the detection 1259 

pipeline, and prevent joint optimization. 1260 

Some other effort s [150,151] focus on designing a unified 1261 

framework with modified objective functions. In MultiPath Net- 1262 

work, Zagoruyko et al. [150] developed an ensemble of classifiers 1263 

which were optimized with an integral loss targeting various qual- 1264 

ity metrics. Each classifier was optimized for a specific IoU thresh- 1265 

old and the final prediction results were merged from these clas- 1266 

sifiers. Tychsen et al. proposed Fitness-NMS [152] which learned 1267 

novel fitness score function of IoU between proposals and objects. 1268 

They argued that existing detectors aimed to find qualified predic- 1269 

tions instead of best predictions and thus highly quality and low 1270 

quality proposals received equal importance. Fitness-IoU assigned 1271 

higher importance to highly overlapped proposals. They also de- 1272 

rived a bounding box regression loss based on a set of IoU up- 1273 

per bounds to maximum the IoU of predictions with objects. In- 1274 

spired by CornerNet [63] and DeNet [94] , Lu et al. [151] proposed 1275 

a Grid R-CNN which replaced linear bounding box regressor with 1276 

the principle of locating corner keypoints corner-based mechanism. 1277 

4.1.4. Cascade learning 1278 

Cascade learning is a coarse-to-fine learning strategy which 1279 

collects information from the output of the given classifiers to 1280 

build stronger classifiers in a cascaded manner. Cascade learning 1281 

strategy was first used by Viola and Jones [17] to train the ro- 1282 

bust face detectors. In their models, a lightweight detector first 1283 

rejects the majority easy negatives and feeds hard proposals to 1284 

train detectors in next stage. For deep learning based detection 1285 

algorithms, Yang et al. [153] proposed CRAFT (Cascade Region- 1286 

proposal-network And FasT-rcnn) which learned RPN and region 1287 

classifiers with a cascaded learning strategy. CRAFTS first learned 1288 

a standard RPN followed by a two-class Fast RCNN which rejected 1289 

the majority easy negatives. The remaining samples were used to 1290 

build the cascade region classifiers which consisted of two Fast RC- 1291 

NNs. Yang et al. [100] introduced layer-wise cascade classifiers for 1292 

different scale objects in different layers. Multiple classifiers were 1293 

placed on different feature maps and classifiers on shallower lay- 1294 

ers would reject easy negatives. The remaining samples would be 1295 

fed into deeper layers for classification. RefineDet [92] and Cas- 1296 

cade R-CNN [49] utilized cascade learning methods in refining ob- 1297 

ject locations. They built multi-stage bounding box regressors and 1298 

bounding box predictions were refined in each stage trained with 1299 

different quality metrics. Cheng et al. [132] observed the failure 1300 

cases of Faster RCNN, and noticed that even though the localiza- 1301 

tion of objects was good, there were several classification errors. 1302 

They attributed this to sub-optimal feature representation due to 1303 

sharing of features and joint multi-task optimization, for classifi- 1304 

cation and regression; and they also argued that the large recep- 1305 

tive field of Faster RCNN induce too much noise in the detection 1306 

process. They found that vanilla RCNN was robust to these issues. 1307 

Thus, they built a cascade detection system based on Faster RCNN 1308 

and RCNN to complement each other. Specifically, A set of initial 1309 

predictions were obtained from a well trained Faster RCNN, and 1310 

these predictions were used to train RCNN to refine the results. 1311 

4.1.5. Others 1312 

There are some other learning strategies which offer interest- 1313 

ing directions, but have not yet been extensively explored. We split 1314 

these approaches into four categories: adversarial learning, training 1315 

from scratch and knowledge distillation. 1316 

Adversarial learning. Adversarial learning has shown signif- 1317 

icant advances in generative models. The most famous work 1318 

applying adversarial learning is generative adversarial network 1319 

(GAN) [154] where a generator is competing with a discriminator. 1320 

The generator tries to model data distribution by generating fake 1321 

images using a noise vector input and use these fake images to 1322 

confuse the discriminator, while the discriminator competes with 1323 

the generator to identify the real images from fake images. GAN 1324 

and its variants [155–157] have shown effectiveness in many do- 1325 

mains and have also found applications in object detection. Li 1326 

et al. [158] proposed a new framework Perceptual GAN for small 1327 

object detection. The learnable generator learned high-resolution 1328 

feature representations of small objects via an adversarial scheme. 1329 

Specifically, its generator learned to transfer low-resolution small 1330 

region features into high-resolution features and competed with 1331 

the discriminator which identified real high-resolution features. Fi- 1332 

nally the generator learned to generate high quality features for 1333 

small objects. Wang et al. [159] proposed A-Fast-R-CNN which was 1334 

trained by generated adversarial examples. They argued the diffi- 1335 

cult samples were on long tail so they introduced two novel blocks 1336 

which automatically generated features with occlusion and defor- 1337 

mation. Specifically, a learned mask was generated on region fea- 1338 

tures followed by region classifiers. In this case, the detectors could 1339 

receive more adversarial examples and thus become more robust. 1340 

Training from scratch. Modern object detectors heavily rely on 1341 

pre-trained classification models on ImageNet, however, the bias of 1342 

loss functions and data distribution between classification and de- 1343 

tection can have an adversarial impact on the performance. Fine- 1344 

tuning on detection task can relieve this issue, but cannot fully get 1345 

rid of the bias. Besides, transferring a classification model for de- 1346 

tection in a new domain can lead to more challenges (from RGB 1347 

to MRI data etc.). Due to these reasons, there is a need to train 1348 

detectors from scratch, instead of relying on pretrained models. 1349 

The main difficulty of training detectors from scratch is the train- 1350 

ing data of object detection is often insufficient and may lead to 1351 

overfitting. Different from image classification, object detection re- 1352 

quires bounding box level annotations and thus, annotating a large 1353 

scale detection dataset requires much more effort and time (Ima- 1354 

geNet has 10 0 0 categories for image classification while only 200 1355 

of them have detection annotations). 1356 

There are some works [107,160,161] exploring training object 1357 

detectors from scratch. Shen et al. [107] first proposed a novel 1358 

framework DSOD (Deeply Supervised Object Detectors) to train 1359 

detectors from scratch. They argued deep supervision with a 1360 

densely connected network structure could significantly reduce op- 1361 
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Fig. 10. Duplicate predictions are eliminated by NMS operation. The most-confident 

box is kept, and all other boxes surrounding it will be removed. 

timization difficulties. Based on DSOD, Shen et al. [162] proposed 1362 

a gated recurrent feature pyramid which dynamically adjusted 1363 

supervision intensities of intermediate layers for objects with dif- 1364 

ferent scales. They defined a recurrent feature pyramid structure to 1365 

squeeze both spatial and semantic information into a single pre- 1366 

diction layer, which further reduced parameter numbers leading 1367 

to faster convergence. In addition, the gate-control structure on 1368 

feature pyramids adaptively adjusted the supervision at different 1369 

scales based on the size of objects. Their method was more pow- 1370 

erful than original DSOD. However, later He et al. [160] validated 1371 

the difficulty of training detectors from scratch on MSCOCO and 1372 

found that the vanilla detectors could obtain a competitive perfor- 1373 

mance with at least 10K annotated images. Their findings proved 1374 

no specific structure was required for training from scratch which 1375 

contradicted the previous work. 1376 

Knowledge distillation. Knowledge distillation is a training strat- 1377 

egy which distills the knowledge in an ensemble of models into 1378 

a single model via teacher-student training scheme. This learning 1379 

strategy was first used in image classification [163] . In object 1380 

detection, some works [132,164] also investigate this training 1381 

scheme to improve detection performance. Li et al. [164] proposed 1382 

a light weight detector whose optimization was carefully guided 1383 

by a heavy but powerful detector. This light detector could achieve 1384 

comparable detection accuracy by distilling knowledge from 1385 

the heavy one, meanwhile having faster inference speed. Cheng 1386 

et al. [132] proposed a Faster R-CNN based detector which was 1387 

optimized via teacher-student training scheme. An R-CNN model 1388 

is used as teacher network to guide the training process. Their 1389 

framework showed improvement in detection accuracy compared 1390 

with traditional single model optimization strategy. 1391 

4.2. Testing stage 1392 

Object detection algorithms make a dense set of predictions 1393 

and thus these predictions cannot be directly used for evaluation 1394 

due to heavy duplication. In addition, some other learning strate- 1395 

gies are required to further improve the detection accuracy. These 1396 

strategies improve the quality of prediction or accelerate the infer- 1397 

ence speed. In this section, we introduce these strategies in testing 1398 

stage including duplicate removal, model acceleration and other ef- 1399 

fective techniques. 1400 

4.2.1. Duplicate removal 1401 

Non maximum suppression (NMS) is an integral part of ob- 1402 

ject detection to remove duplicate false positive predictions (See 1403 

Fig. 10 ). Object detection algorithms make a dense set of predic- 1404 

tions with several duplicate predictions. For one-stage detection al- 1405 

gorithms which generate a dense set of candidate proposals such 1406 

as SSD [42] or DSSD (Deconvolutional Single Shot Detector) [112] , 1407 

the proposals surrounding the same object may have similar confi- 1408 

dence scores, leading to false positives. For two-stage detection al- 1409 

gorithms which generates a sparse set of proposals, the bounding 1410 

box regressors will pull these proposals close to the same object 1411 

and thus lead to the same problem. The duplicate predictions are 1412 

regarded as false positives and will receive penalties in evaluation, 1413 

so NMS is needed to remove these duplicate predictions. Specifi- 1414 

cally, for each category, the prediction boxes are sorted according 1415 

to the confidence score and the box with highest score is selected. 1416 

This box is denoted as M . Then IoU of other boxes with M is cal- 1417 

culated, and if the IoU value is larger than a predefined threshold 1418 

�test , these boxes will are removed. This process is repeated for all 1419 

remaining predictions. More formally, the confidence score of box 1420 

B which overlaps with M larger than �test will be set to zero: 1421 

Score B = 

{
Score B IoU (B, M) < �test 

0 IoU (B, M) ≥ �test 
(13) 

However, if an object just lies within �test of M , NMS will result 1422 

in a missing prediction, and this scenario is very common in clus- 1423 

tered object detection. Navaneeth et al. [165] introduced a new al- 1424 

gorithm Soft-NMS to address this issue. Instead of directly elimi- 1425 

nating the prediction B , Soft-NMS decayed the confidence score of 1426 

B as a continuous function F ( F can be linear function or Gau ssian 1427 

function) of its overlaps with M . This is given by: 1428 

Score B = 

{
Score B IoU (B, M) < �test 

F ( IoU (B, M)) IoU (B, M) ≥ �test 
(14) 

Soft-NMS avoided eliminating prediction of clustered objects and 1429 

showed improvement in many common benchmarks. Hosong et al 1430 

[166] . introduced a network architecture designed to perform NMS 1431 

based on confidence scores and bounding boxes, which was opti- 1432 

mized separately from detector training in a supervised way. They 1433 

argued the reason for duplicate predictions was that the detector 1434 

deliberately encouraged multiple high score detections per object 1435 

instead of rewarding one high score. Based on this, they designed 1436 

the network following two motivations: (i) a loss penalizing double 1437 

detections to push detectors to predict exactly one precise detec- 1438 

tion per object; (ii) joint processing of detections nearby to give 1439 

the detector information whether an object is detected more than 1440 

once. The new proposed model did not discard detections but in- 1441 

stead reformulated NMS as a re-scoring task that sought to de- 1442 

crease the score of detections that cover objects that already have 1443 

been detected. 14 4 4 

4.2.2. Model acceleration 1445 

Application of object detection for real world application re- 1446 

quires the algorithms to function in an efficient manner. Thus, 1447 

evaluating detectors on efficiency metrics is important. Although 1448 

current state-of-the-art algorithms [1,167] can achieve very strong 1449 

results on public datasets, their inference speeds make it difficult 1450 

to apply them into real applications. In this section we review sev- 1451 

eral works on accelerating detectors. Two-stage detectors are usu- 1452 

ally slower than one-stage detectors because they have two stages 1453 

- one proposal generation and one region classification, which 1454 

makes them computationally more time consuming than one-stage 1455 

detectors which directly use one network for both proposal gener- 1456 

ation and region classification. R-FCN [52] built spatially-sensitive 1457 

feature maps and extracted features with position sensitive ROI 1458 

Pooling to share computation costs. However, the number of chan- 1459 

nels of spatially-sensitive feature maps significantly increased with 1460 

the number of categories. Li et al. [168] proposed a new frame- 1461 

work Light Head R-CNN which significantly reduced the number 1462 

of channels in the final feature map (from 1024 to 16) instead of 1463 

sharing all computation. Thus, though computation was not shared 1464 

across regions, but the cost could be neglected. 1465 

From the aspect of backbone architecture, a major computa- 1466 

tion cost in object detection is feature extraction [34] . A simple 1467 

idea to accelerate detection speed is to replace the detection back- 1468 

bone with a more efficient backbone, e.g., MobileNet [74,169] was 1469 
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an efficient CNN model with depth-wise convolution layers which 1470 

was also adopted into many works such as [170] and [171] . 1471 

PVANet [104] was proposed as a new network structure with 1472 

CReLu [172] layer to reduce non-linear computation and acceler- 1473 

ated inference speed. Another approach is to optimize models off- 1474 

line, such as model compression and quantization [173–179] on 1475 

the learned models. Finally, NVIDIA Corporation 

2 released an ac- 1476 

celeration toolkit TensorRT 3 which optimized the computation of 1477 

learned models for deployment and thus significantly sped up the 1478 

inference. 1479 

4.2.3. Others 1480 

Other learning strategies in testing stage mainly comprise the 1481 

transformation of input image to improve the detection accuracy. 1482 

Image pyramids [1,92] are a widely used technique to improve de- 1483 

tection results, which build a hierarchical image set at different 1484 

scales and make predictions on all of these images. The final detec- 1485 

tion results are merged from the predictions of each image. Zhang 1486 

et al. [87,92] used a more extensive image pyramid structure to 1487 

handle different scale objects. They resized the testing image to 1488 

different scales and each scale was responsible for a certain scale 1489 

range of objects. Horizontal Flipping [3,92] was also used in the 1490 

testing stage and also showed improvement. These learning strate- 1491 

gies largely improved the capability of detector to handle different 1492 

scale objects and thus were widely used in public detection com- 1493 

petitions. However, they also increase computation cost and thus 1494 

were not suitable for real world applications. 1495 

5. Applications 1496 

Object detection is a fundamental computer vision task and 1497 

there are many real world applications based on this task. Dif- 1498 

ferent from generic object detection, these real world applications 1499 

commonly have their own specific properties and thus carefully- 1500 

designed detection algorithms are required. In this section, we will 1501 

introduce several real world applications such as face detection 1502 

and pedestrian detection. 1503 

5.1. Face detection 1504 

Face detection is a classical computer vision problem to detect 1505 

human faces in the images, which is often the first step towards 1506 

many real-world applications with human beings, such as face ver- 1507 

ification, face alignment and face recognition. There are some crit- 1508 

ical differences between face detection and generic detection: (i) 1509 

the range of scale for objects in face detection is much larger than 1510 

objects in generic detection. Moreover occlusion and blurred cases 1511 

are more common in face detection; (ii) Face objects contain strong 1512 

structural information, and there is only one target category in face 1513 

detection. Considering these properties of face detection, directly 1514 

applying generic detection algorithms is not an optimal solution as 1515 

there could be some priors that can exploited to improve face de- 1516 

tection. 1517 

In early stages of research before the deep learning era, face 1518 

detection [20,180–182] was mainly based on sliding windows, and 1519 

dense image grids were encoded by hand-crafted features followed 1520 

by training classifiers to find and locate objects. Notably, Viola and 1521 

Jones [20] proposed a pioneering cascaded classifiers using Ad- 1522 

aBoost with Haar features for face detection and obtained excel- 1523 

lent performance with high real time prediction speed. After the 1524 

progresses of deep learning in image classification, face detectors 1525 

based on deep learning significantly outperformed traditional face 1526 

detectors [183–187] . 1527 

2 https://www.nvidia.com/en-us/ . 
3 https://developer.nvidia.com/tensorrt . 

Current face detection algorithms based on deep learning are 1528 

mainly extended from generic detection frameworks such as Fast 1529 

R-CNN and SSD. These algorithms focus more on learning robust 1530 

feature representations. In order to handle extreme scale variance, 1531 

multi-scale feature learning methods discussed before have been 1532 

widely used in face detection. Sun et al. [183] proposed a Fast 1533 

R-CNN based framework which integrated multi-scale features for 1534 

prediction and converted the resulting detection bounding boxes 1535 

into ellipses as the regions of human faces are more elliptical 1536 

than rectangular. Zhang et al. [87] proposed one-stage S3FD which 1537 

found faces on different feature maps to detect faces at a large 1538 

range of scales. They made predictions on larger feature maps 1539 

to capture small-scale face information. Notably, a set of anchors 1540 

were carefully designed according to empirical receptive fields 1541 

and thus provided a better match to the faces. Based on S3FD, 1542 

Zhang et al. [188] proposed a novel network structure to capture 1543 

multi-scale features in different stages. The new proposed feature 1544 

agglomerate structure integrated features at different scales in a 1545 

hierarchical way. Moreover, a hierarchical loss was proposed to 1546 

reduce the training difficulties. Single Stage Headless Face Detector 1547 

(SSH) [189] was another one-stage face detector which combined 1548 

different scale features for prediction. Hu et al. [99] gave a detailed 1549 

analysis of small face detection and proposed a light weight face 1550 

detector consisting of multiple RPNs, each of which was respon- 1551 

sible for a certain range of scales. Their method could effectively 1552 

handle face scale variance but it was slow for real world usage. 1553 

Unlike this method, Hao et al. [190] proposed a Scale Aware Face 1554 

network which addresses scale issues without incurring significant 1555 

computation costs. They learned a scale aware network which 1556 

modeled the scale distribution of faces in a given image and 1557 

guided zoom-in or zoom-out operations to make sure that the 1558 

faces were in desirable scale. The resized image was fed into a 1559 

single scale light weight face detector. Wang et al. [191] followed 1560 

RetinaNet [43] and utilized more dense anchors to handle faces 1561 

in a large range of scales. Moreover, they proposed an attention 1562 

function to account for context information, and to highlight the 1563 

discriminative features. Zhang et al. [192] proposed a deep cas- 1564 

caded multi-task face detector with cascaded structure (MTCNN). 1565 

MTCNN had three stages of carefully designed CNN models to 1566 

predict faces in a coarse-to-fine style. Further, they also proposed 1567 

a new online hard negative mining strategy to improve the result. 1568 

Samangouei et al. [193] proposed a Face MegNet which allowed 1569 

information flow of small faces without any skip connections by 1570 

placing a set of deconvolution layers before RPN and ROI Pooling 1571 

to build up finer face representations. 1572 

In addition to multi-scale feature learning, some frameworks 1573 

were focused on contextual information. Face objects have strong 1574 

physical relationships with the surrounding contexts (commonly 1575 

appearing with human bodies) and thus encoding contextual 1576 

information became an effective way to improve detection accu- 1577 

racy. Zhang et al. [194] proposed FDNet based on ResNet with 1578 

larger deformable convolutional kernels to capture image context. 1579 

Zhu et al. [195] proposed a Contextual Multi-Scale Region-based 1580 

Convolution Neural Network (CMS-RCNN) in which multi-scale in- 1581 

formation was grouped both in region proposal and ROI detection 1582 

to deal with faces at various range of scale. In addition, contextual 1583 

information around faces is also considered in training detectors. 1584 

Notably, Tang et al. [185] proposed a state-of-the-art context 1585 

assisted single shot face detector, named PyramidBox to handle 1586 

the hard face detection problem. Observing the importance of the 1587 

context, they improved the utilization of contextual information 1588 

in the following three aspects: (i) first, a novel context anchor 1589 

was designed to supervise high-level contextual feature learning 1590 

by a semi-supervised method, dubbed as PyramidAnchors; (ii) the 1591 

Low-level Feature Pyramid Network was developed to combine 1592 

adequate high-level context semantic features and low-level facial 1593 
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features together, which also allowed the PyramidBox to predict 1594 

faces at all scales in a single shot; and (iii) they introduced a 1595 

context sensitive structure to increase the capacity of prediction 1596 

network to improve the final accuracy of output. In addition, they 1597 

used the method of data-anchor-sampling to augment the training 1598 

samples across different scales, which increased the diversity 1599 

of training data for smaller faces. Yu et al. [196] introduced a 1600 

context pyramid maxout mechanism to explore image contexts 1601 

and devised an efficient anchor based cascade framework for face 1602 

detection which optimized anchor-based detector in cascaded 1603 

manner. Zhang et al. [197] proposed a two-stream contextual CNN 1604 

to adaptively capture body part information. In addition, they 1605 

proposed to filter easy non-face regions in the shallow layers and 1606 

leave difficult samples to deeper layers. 1607 

Beyond effort s on designing scale-robust or context-assistant 1608 

detectors, Wang et al. [191] developed a framework from the 1609 

perspective of loss function design. Based on vanilla Faster R- 1610 

CNN framework, they replaced original softmax loss with a cen- 1611 

ter loss which encouraged detectors to reduce the large intra-class 1612 

variance in face detection. They explored multiple technologies 1613 

in improving Faster R-CNN such as fixed-ratio online hard neg- 1614 

ative mining, multi-scale training and multi-scale testing, which 1615 

made vanilla Faster R-CNN adaptable to face detection. Later, Wang 1616 

et al. [198] proposed Face R-FCN which was based on vanilla R- 1617 

FCN. Face R-FCN distinguished the contribution of different fa- 1618 

cial parts and introduced a novel position-sensitive average pool- 1619 

ing to re-weight the response on final score maps. This method 1620 

achieved state-of-the-art results on many public benchmarks such 1621 

as FDDB [199] and WIDER FACE [200] . 1622 

5.2. Pedestrian detection 1623 

Pedestrian detection is an essential and significant task in any 1624 

intelligent video surveillance system. Different from generic object 1625 

detection, there are some properties of pedestrian detection differ- 1626 

ent from generic object detection: (i) Pedestrian objects are well 1627 

structured objects with nearly fixed aspect ratios (about 1.5), but 1628 

they also lie at a large range of scales; (ii) Pedestrian detection is 1629 

a real world application, and hence the challenges such as crowd- 1630 

ing, occlusion and blurring are commonly exhibited. For example, 1631 

in the CityPersons dataset, there are a total of 3157 pedestrian 1632 

annotations in the validation subset, among which 48.8% overlap 1633 

with another annotated pedestrian with Intersection over Union 1634 

(IoU) above 0.1. Moreover, 26.4% of all pedestrians have consid- 1635 

erable overlap with another annotated pedestrian with IoU above 1636 

0.3. The highly frequent crowd occlusion harms the performance 1637 

of pedestrian detectors; (iii) There are more hard negative samples 1638 

(such as traffic light, Mailbox etc.) in pedestrian detection due to 1639 

complicated contexts. 1640 

Before the deep learning era, pedestrian detection algorithms 1641 

[19,201–204] were mainly extended from Viola Jones frame- 1642 

works [20] by exploiting Integral Channel Features with a sliding 1643 

window strategy to locate objects, followed by region classifiers 1644 

such as SVMs. The early works were mainly focused on designing 1645 

robust feature descriptors for classification. For example, Dalal and 1646 

Triggs [19] proposed the histograms of oriented gradient (HOG) 1647 

descriptors, while Paisitkriangkrai et al. [204] designed a feature 1648 

descriptor based on low-level visual cues and spatial pooling fea- 1649 

tures. These methods show promising results on pedestrian detec- 1650 

tion benchmarks but were mainly based on hand-crafted features. 1651 

Deep learning based methods for pedestrian detection 1652 

[8–10,205–211] showed excellent performance and achieved state- 1653 

of-the-art results on public benchmarks. Angelova et al [10] pro- 1654 

posed a real-time pedestrian detection framework using a cascade 1655 

of deep convolutional networks. In their work, a large number of 1656 

easy negatives were rejected by a tiny model and the remaining 1657 

hard proposals were then classified by a large deep networks. 1658 

Zhang et al. [212] proposed a decision tree based framework. In 1659 

their method, multiscale feature maps were used to extract pedes- 1660 

trian features, which were later fed into boosted decision trees for 1661 

classification. In contrast to the FC layers, boosted decision trees 1662 

applied a bootstrapping strategy for mining hard negative samples 1663 

and achieved a better performance. Also to reduce the impact of 1664 

large variance in scales, Li et al. [8] proposed Scale-aware Fast 1665 

R-CNN (SAF RCNN) which inserted multiple built-in networks 1666 

into the whole detection framework. The proposed SAF RCNN 1667 

detected different scale pedestrian instances using different sub- 1668 

nets. Further, Yang et al. [100] inserted Scale Dependent Pooling 1669 

(SDP) and Cascaded Rejection Classifiers (CRC) into Fast RCNN 1670 

to handle pedestrians at different scales. According to the height 1671 

of the instances, SDP extracted region features from a suitable 1672 

scale feature map, while CRC rejected easy negative samples in 1673 

shallower layers. Wang et al. [213] proposed a novel Repulsion 1674 

Loss to detect pedestrians in a crowd. They argued that detecting a 1675 

pedestrian in a crowd made it very sensitive to the NMS threshold, 1676 

which led to more false positives and missing objects. The new 1677 

proposed repulsion loss pushed the proposals into their target 1678 

objects but also pulled them away from other objects and their 1679 

target proposals. Based on their idea, Zhang et al. [214] proposed 1680 

an Occlusion-aware R-CNN (OR-CNN) which was optimized by 1681 

an Aggression Loss. The new loss function encouraged the pro- 1682 

posals to be close to the objects and other proposals with the 1683 

same targeted proposals. Mao et al. [215] claimed that properly 1684 

aggregating extra features into pedestrian detector could boost the 1685 

detection accuracy. In their paper, they explored different kinds 1686 

of extra features useful in improving accuracy and proposed a 1687 

new method to use these features. The new proposed component 1688 

- HyperLearner aggregated extra features into a vanilla DCNN 1689 

detector in a jointly optimized fashion and no extra input was 1690 

required for the inference stage. 1691 

For pedestrian detection, one of the most significant challenges 1692 

is to handle occlusion [214,216–226] . A straightforward method is 1693 

to use part-based models which learn a series of part detectors 1694 

and integrate the results of part detectors to locate and classify ob- 1695 

jects. Tian et al. [216] proposed DeepParts which consisted of mul- 1696 

tiple part-based detectors. During training, the important pedes- 1697 

trian parts were automatically selected from a part pool which was 1698 

composed of parts of the human body (at different scales), and for 1699 

each selected part, a detector was learned to handle occlusions. To 1700 

integrate the inaccurate scores of part-based models, Ouyang and 1701 

Wang [223] proposed a framework which modeled visible parts as 1702 

hidden variables in training the models. In their work, the visible 1703 

relationship of overlapping parts were learned by discriminative 1704 

deep models, instead of being manually defined or even being as- 1705 

sumed independent. Later, Ouyang et al. [225] addressed this issue 1706 

from another aspect. They proposed a mixture network to capture 1707 

unique visual information which was formed by crowded pedes- 1708 

trians. To enhance the final predictions of single-pedestrian detec- 1709 

tors, a probabilistic framework was learned to model the relation- 1710 

ship between the configurations estimated by single-pedestrian 1711 

and multi-pedestrian detectors. Zhang et al. [214] proposed an 1712 

occlusion-aware ROI Pooling layer which integrated the prior struc- 1713 

ture information of pedestrian with visibility prediction into the 1714 

final feature representations. The original region was divided into 1715 

five parts and for each part, a sub-network enhanced the original 1716 

region feature via a learned visibility score for better representa- 1717 

tions. Zhou et al. [222] proposed Bi-box which simultaneously es- 1718 

timated pedestrian detection as well as visible parts by regressing 1719 

two bounding boxes, one for the full body and the other for visible 1720 

part. In addition, a new positive-instance sampling criterion was 1721 

proposed to bias positive training examples with large visible area, 1722 

which showed effectiveness in training occlusion-aware detectors. 1723 
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Fig. 11. Some examples of Pascal VOC, MSCOCO, Open Images and LVIS. 

5.3. Others 1724 

There are some other real applications with object detection 1725 

techniques, such as logo detection and video object detection. 1726 

Logo detection is an important research topic in e-commerce 1727 

systems. Compared to generic detection, logo instance is much 1728 

smaller with strong non-rigid transformation. Further, there are 1729 

few logo detection baselines available. To address this issue, Su 1730 

et al. [15] adopted the learning principle of webly data learning 1731 

which automatically mined information from noisy web images 1732 

and learns models with limited annotated data. Su et al. [14] de- 1733 

scribed an image synthesising method to successfully learn a de- 1734 

tector with limited logo instances. Hoi et al. [13] collected a large 1735 

scale logo dataset from an e-commerce website and conducted a 1736 

comprehensive analysis on the problem logo detection. 1737 

Existing detection algorithms are mainly designed for still im- 1738 

ages and are suboptimal for directly applying in videos for ob- 1739 

ject detection. To detect objects in videos, there are two ma- 1740 

jor differences from generic detection: temporal and contextual 1741 

information. The location and appearance of objects in video 1742 

should be temporally consistent between adjacent frames. More- 1743 

over, a video consists of hundreds of frames and thus contains 1744 

far richer contextual information compared to a single still im- 1745 

age. Han et al. [54] proposed a Seq-NMS which associates de- 1746 

tection results of still images into sequences. Boxes of the same 1747 

sequence are re-scored to the average score across frames, and 1748 

other boxes along the sequence are suppressed by NMS. Kang 1749 

et al. proposed Tubelets with Convolutional Neural Networks (T- 1750 

CNN) [53] which was extended from Faster RCNN and incorpo- 1751 

rated the temporal and contextual information from tubelets (box 1752 

sequence over time). T-CNN propagated the detection results to the 1753 

adjacent frames by optical flow, and generated tubelets by apply- 1754 

ing tracking algorithms from high-confidence bounding boxes. The 1755 

boxes along the tubelets were re-scored based on tubelets classifi- 1756 

cation. 1757 

There are also many other real-world applications based on ob- 1758 

ject detection such as vehicle detection [227–229] , traffic-sign de- 1759 

tection [230,231] and skeleton detection [232,233] . 1760 

6. Detection benchmarks 1761 

In this section we will show some common benchmarks of 1762 

generic object detection, face detection and pedestrian detection. 1763 

We will first present some widely used datasets for each task and 1764 

then introduce the evaluation metrics. 1765 

6.1. Generic detection benchmarks 1766 

Pascal VOC2007 [29] is a mid scale dataset for object detection 1767 

with 20 categories. There are three image splits in VOC2007: train- 1768 

ing, validation and test with 2501, 2510 and 5011 images respec- 1769 

tively. 1770 

Pascal VOC2012 [29] is a mid scale dataset for object detection 1771 

which shares the same 20 categories with Pascal VOC2007. There 1772 

are three image splits in VOC2012: training, validation and test 1773 

with 5717, 5823 and 10991 images respectively. The annotation in- 1774 

formation of VOC2012 test set is not available. 1775 

MSCOCO [86] is a large scale dataset for with 80 categories. 1776 

There are three image splits in MSCOCO: training, validation and 1777 

test with 118287, 50 0 0 and 40,670 images respectively. The anno- 1778 

tation information of MSCOCO test set is not available. 1779 

Open Images [234] contains 1.9M images with 15M objects of 1780 

600 categories. The 500 most frequent categories are used to eval- 1781 

uate detection benchmarks, and more than 70% of these categories 1782 

have over 10 0 0 training samples. 1783 

LVIS [235] is a new collected benchmark with 164,0 0 0 images 1784 

and 10 0 0 + categories. It is a new dataset without any existing 1785 

results so we leave the details of LVIS in future work section 1786 

( Section 9 ). 1787 

ImageNet [37] is also a important dataset with 200 categories. 1788 

However, the scale of ImageNet is huge and the object scale range 1789 

is similar to VOC datasets, so it is not a commonly used bench- 1790 

marks for detection algorithms. 1791 

Evaluation metrics: The details of evaluation metrics are shown 1792 

in Tab. 1 , both detection accuracy and inference speed are used 1793 

to evaluate detection algorithms. For detection accuracy, mean 1794 

Average Precision (mAP) is used as evaluation metric for all these 1795 

challenges. The mAP is the mean value of AP, which is calculated 1796 

separately for each class based on recall and precision. Assume the 1797 

detector returns a set of predictions, we sample top γ predictions 1798 

by confidence in decreasing order, which is denoted as D γ . Next 1799 

we calculate the number of true positive (TP γ ) and false positive 1800 

(FP γ ) from sampled D γ by the metric introduced in Section 2 . 1801 

Based on TP γ and FP γ , recall (R γ ) and precision (P γ ) are easy 1802 

to obtain. AP is the region area under the curve of precision and 1803 

recall, which is also easy to compute by varying the value of 1804 

parameter γ . Finally mAP is computed by averaging the value of 1805 

AP across all classes. For VOC2012, VOC2007 and ImageNet, IoU 1806 

threshold of mAP is set to 0.5, and for MSCOCO, more comprehen- 1807 

sive evaluation metrics are applied. There are six evaluation scores 1808 

which demonstrates different capability of detection algorithms, 1809 

including performance on different IoU thresholds and on differ- 1810 

ent scale objects. Some examples of listed datasets (Pascal VOC, 1811 

MSCOCO, Open Images and LVIS) are shown in Fig. 11 . 1812 

6.2. Face detection benchmarks 1813 

In this section, we introduce several widely used face detection 1814 

datasets (WIDER FACE, FDDB and Pascal Face) and the commonly 1815 

used evaluation metrics. 1816 

WIDER FACE [200] . WIDER FACE has totally 32,203 images with 1817 

about 400 k faces for a large range of scales. It has three subsets: 1818 

40% for training, 10% for validation, and 50% for test. The annota- 1819 

tions of training and validation sets are online available. According 1820 
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Table 1 

Summary of common evaluation metrics for various detection tasks including generic object detection, face detection and pedestrian detection. 

Alias Meaning Definition and description 

FPS Frame per second The number of images processed per second. 

� IoU threshold The IoU threshold to evaluate localization. 

D γ All Predictions Top γ predictions returned by the detectors by confidence in decreasing order. 

TP γ True Positive Correct predictions from sampled predictions D γ . 

FP γ False Positive False predictions from sampled predictions D γ . 

P γ Precision The fraction of TP γ out of D γ . 

R γ Recall The fraction of TP γ out of all positive samples. 

AP Average Precision Region area under curve of R γ and P γ by varying the value of parameter γ . 

mAP mean AP Average score of AP across all classes. 

TPR True Positive Rate The fraction of positive rate over false positives. 

FPPI FP Per Image The fraction of false positive for each image. 

MR log-average missing rate Average miss rate over different FPPI rates evenly spaced in log-space 

Generic Object Detection 

mAP mean Average Precision VOC2007 mAP at 0.50 IoU threshold over all 20 classes. 

VOC2012 mAP at 0.50 IoU threshold over all 20 classes. 

OpenImages mAP at 0.50 IoU threshold over 500 most frequent classes. 

MSCOCO • AP coco : mAP averaged over ten �: {0.5: 0.05: 0.95}; 

• AP 50 : mAP at 0.50 IoU threshold; 

• AP 75 : mAP at 0.75 IoU threshold; 

• AP S : AP coco for small objects of area smaller than 32 2 ; 

• AP M : AP coco for objects of area between 32 2 and 96 2 ; 

• AP L : AP coco for large objects of area bigger than 96 2 ; 

Face detection 

mAP mean Average Precision Pascal Face mAP at 0.50 IoU threshold. 

AFW mAP at 0.50 IoU threshold. 

WIDER FACE • mAP easy : mAP for easy level faces; 

• mAP mid : mAP for mid level faces; 

• mAP hard : mAP for hard level faces; 

TPR True Positive Rate FDDB • TPR d is with 1k FP at 0.50 IoU threshold, with bbox level. 

• TPR c ont with 1k FP at 0.50 IoU threshold, with eclipse level. 

Pedestrian Detection 

mAP mean Average Precision KITTI • mAP easy : mAP for easy level pedestrians; 

• mAP mid : mAP for mid level pedestrians; 

• mAP hard : mAP for hard level pedestrians; 

MR log-average miss rate CityPersons MR: ranging from 1 e −2 to 100 FPPI 

Caltech MR: ranging from 1 e −2 to 1 e 0 FPPI 

ETH MR: ranging from 1 e −2 to 1 e 0 FPPI 

INRIA MR: ranging from 1 e −2 to 1 e 0 FPPI 

to the difficulty of detection tasks, it has three splits: Easy, Medium 1821 

and Hard. 1822 

FDDB [199] . The Face Detection Data set and Benchmark (FDDB) 1823 

is a well-known benchmark with 5171 faces in 2845 images. Com- 1824 

monly face detectors will first be trained on a large scale dataset 1825 

(WIDERFACE etc.) and tested on FDDB. 1826 

PASCAL FACE [29] . This dataset was collected from PASCAL per- 1827 

son layout test set, with 1335 labeled faces in 851 images. Similar 1828 

to FDDB, it’s commonly used as test set only. 1829 

Evaluation Metrics. As Table 1 shown, the evaluation metric for 1830 

WIDER FACE and PASCAL FACE is mean average precision (mAP) 1831 

with IoU threshold as 0.5, and for WIDER FACE the results of each 1832 

difficulty level will be reported. For FDDB, true positive rate (TPR) 1833 

at 1k false positives are used for evaluation. There are two an- 1834 

notation types to evaluate FDDB dataset: bounding box level and 1835 

eclipse level. 1836 

6.3. Pedestrian detection benchmarks 1837 

In this section we will first introduce five widely used datasets 1838 

(Caltech, ETH, INRIA, CityPersons and KITTI) for pedestrian object 1839 

detection and then introduce their evaluation metrics. 1840 

CityPersons [257] is a new and challenging pedestrian de- 1841 

tection dataset on top of the semantic segmentation dataset 1842 

CityScapes [258] , of which 50 0 0 images are captured in several 1843 

cities in Germany. A total of 35,0 0 0 persons with an additional 1844 

13,0 0 0 ignored regions, both bounding box annotation of all per- 1845 

sons and annotation of visible parts are provided. 1846 

Caltech [259] is a popular and challenging datasets for pedes- 1847 

trian detection, which comes from approximately 10 h 30 Hz VGA 1848 

video recorded by a car traversing the streets in the greater Los 1849 

Angeles metropolitan area. The training and testing sets contains 1850 

42,782 and 4024 frames, respectively. 1851 

ETH [260] contains 1804 frames in three video clips and com- 1852 

monly it’s used as test set to evaluate performance of the models 1853 

trained on the large scale datasets (CityPersons dataset etc.). 1854 

INRIA [19] contains images of high resolution pedestrians col- 1855 

lected mostly from holiday photos, which consists of 2120 images, 1856 

including 1832 images for training and 288 images. Specifically, 1857 

there are 614 positive images and 1218 negative images in the 1858 

training set. 1859 

KITTI [261] contains 7481 labeled images of resolution 1860 

1250 × 375 and another 7518 images for testing. The person class 1861 

in KITTI is divided into two subclasses: pedestrian and cyclist, both 1862 

evaluated by mAP method. KITTI contains three evaluation metrics: 1863 

easy, moderate and hard, with difference in the min. bounding box 1864 

height, max. occlusion level, etc. 1865 

Evaluation Metrics. For CityPersons, INRIA and ETH, the log- 1866 

average miss rate (MR) over 9 points ranging from 1 e −2 to 1 e 0 FPPI 1867 

(False Positive Per Image) is used to evaluate the performance of 1868 

the detectors (lower is better). For KITTI, standard mean average 1869 

precision is used as evaluation metric with 0.5 IoU threshold. 1870 

Please cite this article as: X. Wu, D. Sahoo and S.C.H. Hoi, Recent advances in deep learning for object detection, Neurocomputing, 

https://doi.org/10.1016/j.neucom.2020.01.085 

https://doi.org/10.1016/j.neucom.2020.01.085


20 X. Wu, D. Sahoo and S.C.H. Hoi / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 30, 2020;1:22 ] 

Table 2 

Detection results on PASCAL VOC dataset. For VOC2007, the models are trained on VOC2007 and VOC2012 trainval sets and tested 

on VOC2007 test set. For VOC2012, the models are trained on VOC2007 and VOC2012 trainval sets plus VOC2007 test set and 

tested on VOC2012 test set by default. Since Pascal VOC datasets are well tuned and thus the number of detection frameworks for 

VOC reduces in recent years. 

Method Backbone Proposed Year Input size(Test) mAP (%) 

VOC2007 VOC2012 

Two-stage Detectors: 

R-CNN [2] VGG-16 2014 Arbitrary 66.0 a 62.4 b 

SPP-net [2] VGG-16 2014 ∼ 600 × 1000 63.1 a –

Fast R-CNN [38] VGG-16 2015 ∼ 600 × 1000 70.0 68.4 

Faster R-CNN [34] VGG-16 2015 ∼ 600 × 1000 73.2 70.4 

MR-CNN [131] VGG-16 2015 Multi-Scale 78.2 73.9 

Faster R-CNN [1] ResNet-101 2016 ∼ 600 × 1000 76.4 73.8 

R-FCN [52] ResNet-101 2016 ∼ 600 × 1000 80.5 77.6 

OHEM [148] VGG-16 2016 ∼ 600 × 1000 74.6 71.9 

HyperNet [50] VGG-16 2016 ∼ 600 × 1000 76.3 71.4 

ION [51] VGG-16 2016 ∼ 600 × 1000 79.2 76.4 

CRAFT [153] VGG-16 2016 ∼ 600 × 1000 75.7 71.3 b 

LocNet [149] VGG-16 2016 ∼ 600 × 1000 78.4 74.8 b 

R-FCN w DCN [97] ResNet-101 2017 ∼ 600 × 1000 82.6 –

CoupleNet [125] ResNet-101 2017 ∼ 600 × 1000 82.7 80.4 

DeNet512(wide) [94] ResNet-101 2017 ∼ 512 × 512 77.1 73.9 

FPN-Reconfig [115] ResNet-101 2018 ∼ 600 × 1000 82.4 81.1 

DeepRegionLet [140] ResNet-101 2018 ∼ 600 × 1000 83.3 81.3 

DCN + R-CNN [132] ResNet-101 + ResNet-152 2018 Arbitrary 84.0 81.2 

One-stage Detectors: 

YOLOv1 [40] VGG16 2016 448 × 448 66.4 57.9 

SSD512 [42] VGG-16 2016 512 × 512 79.8 78.5 

YOLOv2 [41] Darknet 2017 544 × 544 78.6 73.5 

DSSD513 [112] ResNet-101 2017 513 × 513 81.5 80.0 

DSOD300 [107] DS/64-192-48-1 2017 300 × 300 77.7 76.3 

RON384 [120] VGG-16 2017 384 × 384 75.4 73.0 

STDN513 [111] DenseNet-169 2018 513 × 513 80.9 –

RefineDet512 [92] VGG-16 2018 512 × 512 81.8 80.1 

RFBNet512 [108] VGG16 2018 512 × 512 82.2 –

CenterNet [64] ResNet101 2019 512 × 512 78.7 - 

CenterNet [64] DLA [64] 2019 512 × 512 80.7 - 

a This entry reports the model is trained with VOC2007 trainval sets only. 
b This entry reports the model are trained with VOC2012 trainval sets only. 

7. State-of-the-art for object detection 1871 

Generic object detection: Pascal VOC20 07, VOC20 07 and MSCOCO 1872 

are three most commonly used datasets for evaluating detection 1873 

algorithms. Pascal VOC2012 and VOC2007 are mid scale datasets 1874 

with 2 or 3 objects per image and the range of object size in VOC 1875 

dataset is not large. For MSCOCO, there are nearly 10 objects per 1876 

image and the majority objects are small objects with large scale 1877 

ranges, which leads to a very challenge task for detection algo- 1878 

rithms. In Tables 2 and 3 we give the benchmarks of VOC2007, 1879 

VOC2012 and MSCOCO over the recent few years. 1880 

Face detection: WIDER FACE is currently the most commonly 1881 

used benchmark for evaluating face detection algorithms. High 1882 

variance of face scales and large number of faces per image make 1883 

WIDER FACE the hardest benchmark for face detection, with three 1884 

evaluation metrics: easy, medium and hard. In Table 4 we give the 1885 

benchmarks of WIDER FACE over the recent few years. 1886 

Pedestrian detection: CityPersons is a new but challenging 1887 

benchmark for pedestrian detection. The dataset is split into dif- 1888 

ferent subsets according to the height and visibility level of the 1889 

objects, and thus it’s able to evaluate the detectors in a more com- 1890 

prehensive manner. The results are listed in Tab. 5 , where MR is 1891 

used for evaluation (lower is better). 1892 

8. Related surveys 1893 

There are some other surveys which is parallel to our 1894 

work [265–269] . Sultana et al. [267] review the existing deep 1895 

learning based detectors and their training settings. Agarwal 1896 

et al. [268] review the connection between deep learning and de- 1897 

tection algorithms proposed in recent years and explore the poten- 1898 

tial leads by introducing some relevant topics such as few-shot de- 1899 

tection and life-long detection. Zhao et al. [269] review the existing 1900 

deep learning based detectors and also provide the benchmarks of 1901 

generic detection and real applications. Jiao et al. [266] cover a se- 1902 

ries of general detection algorithms and introduce the state-of-the- 1903 

art methods to explore novel solutions and directions to develop 1904 

the new detectors. 1905 

Compared with these surveys, our work not only reviews the 1906 

existing representative detectors, but also makes comprehensive 1907 

analysis on general components and learning strategy of different 1908 

detectors. We aim to fully explore the factors which impact de- 1909 

tection tasks, which are not covered in most existing surveys. Liu 1910 

et al. [265] also give a comprehensive understanding of generic 1911 

object detection as well as the analysis of detector components 1912 

and learning strategies. However, their work only focus on generic 1913 

detection but ignore the importance of detection in real-world 1914 

applications. In our survey, we also give a comprehensive un- 1915 

derstanding of the limitations and strategies to adapt generic 1916 

detection algorithms into real-world applications. Furthermore, we 1917 

organize the state-of-the-art algorithms for both generic detection 1918 

and real-world applications to facilitate the future research. Finally, 1919 

based on the tendency of the latest work proposed within the past 1920 

one year, we discuss the future direction of object detection. 1921 

9. Concluding remarks and future directions 1922 

Object detection has been actively investigated and new state- 1923 

of-the-art results have been reported almost every few months. 1924 
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Table 3 

Detection performance on the MS COCO test-dev data set. “++ ” denotes applying inference strategy such as multi scale test, 

horizontal flip, etc. 

Method Backbone Year AP AP 50 AP 75 AP S AP M AP L 

Two-Stage Detectors: 

Fast R-CNN [38] VGG-16 2015 19.7 35.9 − − − −
Faster R-CNN [34] VGG-16 2015 21.9 42.7 − − − −
OHEM [148] VGG-16 2016 22.6 42.5 22.2 5.0 23.7 37.9 

ION [51] VGG-16 2016 23.6 43.2 23.6 6.4 24.1 38.3 

OHEM ++ [148] VGG-16 2016 25.5 45.9 26.1 7.4 27.7 40.3 

R-FCN [52] ResNet-101 2016 29.9 51.9 − 10.8 32.8 45.0 

Faster R-CNN +++ [1] ResNet-101 2016 34.9 55.7 37.4 15.6 38.7 50.9 

Faster R-CNN w FPN [39] ResNet-101 2016 36.2 59.1 39.0 18.2 39.0 48.2 

DeNet-101(wide) [94] ResNet-101 2017 33.8 53.4 36.1 12.3 36.1 50.8 

CoupleNet [125] ResNet-101 2017 34.4 54.8 37.2 13.4 38.1 50.8 

Faster R-CNN by G-RMI [167] Inception-ResNet-v2 2017 34.7 55.5 36.7 13.5 38.1 52.0 

Deformable R-FCN [52] Aligned-Inception-ResNet 2017 37.5 58.0 40.8 19.4 40.1 52.5 

Mask-RCNN [3] ResNeXt-101 2017 39.8 62.3 43.4 22.1 43.2 51.2 

umd_det [236] ResNet-101 2017 40.8 62.4 44.9 23.0 43.4 53.2 

Fitness-NMS [152] ResNet-101 2017 41.8 60.9 44.9 21.5 45.0 57.5 

DCN w Relation Net [138] ResNet-101 2018 39.0 58.6 42.9 − − −
DeepRegionlets [140] ResNet-101 2018 39.3 59.8 − 21.7 43.7 50.9 

C-Mask RCNN [141] ResNet-101 2018 42.0 62.9 46.4 23.4 44.7 53.8 

Group Norm [237] ResNet-101 2018 42.3 62.8 46.2 − − −
DCN + R-CNN [132] ResNet-101 + ResNet-152 2018 42.6 65.3 46.5 26.4 46.1 56.4 

Cascade R-CNN [49] ResNet-101 2018 42.8 62.1 46.3 23.7 45.5 55.2 

SNIP ++ [98] DPN-98 2018 45.7 67.3 51.1 29.3 48.8 57.1 

SNIPER ++ [146] ResNet-101 2018 46.1 67.0 51.6 29.6 48.9 58.1 

PANet ++ [238] ResNeXt-101 2018 47.4 67.2 51.8 30.1 51.7 60.0 

Grid R-CNN [151] ResNeXt-101 2019 43.2 63.0 46.6 25.1 46.5 55.2 

DCN-v2 [144] ResNet-101 2019 44.8 66.3 48.8 24.4 48.1 59.6 

DCN-v2 ++ [144] ResNet-101 2019 46.0 67.9 50.8 27.8 49.1 59.5 

TridentNet [239] ResNet-101 2019 42.7 63.6 46.5 23.9 46.6 56.6 

TridentNet [239] ResNet-101-Deformable 2019 48.4 69.7 53.5 31.8 51.3 60.3 

Single-Stage Detectors: 

SSD512 [42] VGG-16 2016 28.8 48.5 30.3 10.9 31.8 43.5 

RON384 ++ [120] VGG-16 2017 27.4 49.5 27.1 − − −
YOLOv2 [41] DarkNet-19 2017 21.6 44.0 19.2 5.0 22.4 35.5 

SSD513 [112] ResNet-101 2017 31.2 50.4 33.3 10.2 34.5 49.8 

DSSD513 [112] ResNet-101 2017 33.2 53.3 35.2 13.0 35.4 51.1 

RetinaNet800 ++ [43] ResNet-101 2017 39.1 59.1 42.3 21.8 42.7 50.2 

STDN513 [111] DenseNet-169 2018 31.8 51.0 33.6 14.4 36.1 43.4 

FPN-Reconfig [115] ResNet-101 2018 34.6 54.3 37.3 − − −
RefineDet512 [92] ResNet-101 2018 36.4 57.5 39.5 16.6 39.9 51.4 

RefineDet512 ++ [92] ResNet-101 2018 41.8 62.9 45.7 25.6 45.1 54.1 

GHM SSD [147] ResNeXt-101 2018 41.6 62.8 44.2 22.3 45.1 55.3 

CornerNet511 [63] Hourglass-104 2018 40.5 56.5 43.1 19.4 42.7 53.9 

CornerNet511 ++ [63] Hourglass-104 2018 42.1 57.8 45.3 20.8 44.8 56.7 

M2Det800 [116] VGG-16 2019 41.0 59.7 45.0 22.1 46.5 53.8 

M2Det800 ++ [116] VGG-16 2019 44.2 64.6 49.3 29.2 47.9 55.1 

ExtremeNet [240] Hourglass-104 2019 40.2 55.5 43.2 20.4 43.2 53.1 

CenterNet-HG [64] Hourglass-104 2019 42.1 61.1 45.9 24.1 45.5 52.8 

FCOS [241] ResNeXt-101 2019 42.1 62.1 45.2 25.6 44.9 52.0 

FSAF [95] ResNeXt-101 2019 42.9 63.8 46.3 26.6 46.2 52.7 

CenterNet511 [65] Hourglass-104 2019 44.9 62.4 48.1 25.6 47.4 57.4 

CenterNet511 ++ [65] Hourglass-104 2019 47.0 64.5 50.7 28.9 49.9 58.9 

However, there are still many open challenges. Below we discuss 1925 

several open challenges and future directions. 1926 

(i) Scalable proposal generation strategy. As claimed in 1927 

Section 3.4 , currently most detectors are anchor-based meth- 1928 

ods, and there are some critical shortcomings which limit the 1929 

detection accuracy. Current anchor priors are mainly manually 1930 

designed which is difficult to match multi-scale objects and the 1931 

matching strategy based on IoU is also heuristic. Although some 1932 

methods have been proposed to transform anchor-based methods 1933 

into anchor-free methods (e.g. methods based on keypoints), there 1934 

are still some limitations (high computation cost etc.) with large 1935 

space to improve. From Fig. 2 , developing anchor-free methods 1936 

becomes a very hot topic in object detection [63,65,95,240,241] , 1937 

and thus designing an efficient and effective proposal generation 1938 

strategy is potentially a very important research direction in the 1939 

future. 1940 

(ii) Effective encoding of contextual information. Contexts can 1941 

contribute or impede visual object detection results, as objects in 1942 

the visual world have strong relationships, and contexts are crit- 1943 

ical to better understand the visual worlds. However, little effort 1944 

has been focused on how to correctly use contextual information. 1945 

How to incorporate contexts for object detection effectively can be 1946 

a promising future direction. 1947 

(iii) Detection based on Auto Machine Learning (AutoML). To de- 1948 

sign an optimal backbone architecture for a certain task can sig- 1949 

nificantly improve the results but also requires huge engineer- 1950 

ing effort. Thus to learn backbone architecture directly on the 1951 

datasets is a very interesting and important research direction. 1952 

From Fig. 2 , inspired by the pioneering AutoML work on image 1953 

classification [270,271] , more relevant work has been proposed to 1954 

address detection problems via AutoML [272,273] , such as learning 1955 

FPN structure [273] and learning data augmentation policies [274] , 1956 
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Table 4 

Detection results on WIDER FACE dataset. The models are trained 

on WIDER FACE training sets and tested on WIDER FACE 

test set. 

Method Year mAP (%) 

Easy Medium Hard 

ACF-WIDER [242] 2014 69.5 58.8 29.0 

Faceness [243] 2015 71.6 60.4 31.5 

Two-stage CNN [200] 2016 65.7 58.9 30.4 

LDCF + [244] 2016 79.7 77.2 56.4 

CMS-CNN [195] 2016 90.2 87.4 64.3 

MSCNN [106] 2016 91.7 90.3 80.9 

ScaleFace [245] 2017 86.7 86.6 76.4 

HR [99] 2017 92.3 91.0 81.9 

SHH [189] 2017 92.7 91.5 84.4 

Face R-CNN [191] 2017 93.2 91.6 82.7 

S3FD [87] 2017 93.5 92.1 85.8 

Face R-FCN [198] 2017 94.3 93.1 87.6 

FAN [246] 2017 94.6 93.6 88.5 

FANet [188] 2017 94.7 93.9 88.7 

FDNet [247] 2018 95.0 93.9 87.8 

PyramidBox [185] 2018 95.6 94.6 88.7 

SRN [186] 2018 95.9 94.8 89.6 

DSFD [187] 2018 96.0 95.3 90.0 

DFS [248] 2018 96.3 95.4 90.7 

SFDet [249] 2019 94.8 94.0 88.3 

CSP [250] 2019 94.9 94.4 89.9 

PyramidBox ++ [251] 2019 95.6 95.2 90.9 

VIM-FD [252] 2019 96.2 95.3 90.2 

ISRN [253] 2019 96.3 95.4 90.3 

RetinaFace [254] 2019 96.3 95.6 91.4 

AlnnoFace [255] 2019 96.5 95.7 91.2 

RefineFace [256] 2019 96.6 95.8 91.4 

Table 5 

Detection results on CityPersons dataset. The models are trained on 

CityPersons training sets and tested on CityPersons test set. 

There are four evaluation metrics: Reasonable (R.), Small (S.), Heavy 

(H.) and All (A.), which are related to the height and visibility level 

of the objects. 

Method Year R. S. H. A. 

FRCNN [38] 2015 12.97 37.24 50.47 43.86 

MS-CNN [106] 2016 13.32 15.86 51.88 39.94 

RepLoss [213] 2017 11.48 15.67 52.59 39.17 

Ada-FRCN [257] 2017 12.97 37.24 50.47 43.86 

OR-CNN [214] 2018 11.32 14.19 51.43 40.19 

HBAN [262] 2019 11.26 15.68 39.54 38.77 

MGAN [263] 2019 9.29 11.38 40.97 38.86 

APD [264] 2019 8.27 11.03 35.45 35.65 

which show significant improvement over the baselines. However, 1957 

the required computation resource for AutoML is unaffordable to 1958 

most researchers (more than 100 GPU cards to train a single 1959 

model). Thus, developing a low-computation framework shall have 1960 

a large impact for object detection. Further, new structure poli- 1961 

cies (such as proposal generation and region encoding) of detection 1962 

task can be explored in the future. 1963 

(iv) Emerging benchmarks for object detection. Currently MSCOCO 1964 

is the most commonly used detection benchmark testbed. How- 1965 

ever, MSCOCO has only 80 categories, which is still too small to 1966 

understand more complicated scenes in real world. Recently, a new 1967 

benchmark dataset LVIS [235] has been proposed in order to col- 1968 

lect richer categorical information. LVIS contains 164,0 0 0 images 1969 

with 10 0 0 + categories, and there are total of 2.2 million high- 1970 

quality instance segmentation masks. Further, LVIS simulates the 1971 

real-world low-shot scenario where a large number of categories 1972 

are present but per-category data is sometimes scarce. LVIS will 1973 

open a new benchmark for more challenging detection, segmenta- 1974 

tion and low-shot learning tasks in near future. 1975 

(v) Low-shot object detection. Training detectors with limited la- 1976 

beled data is dubbed as Low-shot detection. Deep learning based 1977 

detectors often have huge amount of parameters and thus are 1978 

data-hungry, which require large amount of labeled data to achieve 1979 

satisfactory performance. However, labeling objects in images with 1980 

bounding box level annotation is very time-consuming. Low-shot 1981 

learning has been actively studied for classification tasks, but only 1982 

a few studies are focused on detection tasks. For example, Multi- 1983 

modal Self-Paced Learning for Detection (MSPLD) [275] addresses 1984 

the low-shot detection problem in a semi-supervised learning 1985 

setting where a large-scale unlabeled dataset is available. Rep- 1986 

Met [276] adopts a Deep Metric Learning (DML) structure, which 1987 

jointly learns feature embedding space and data distribution of 1988 

training set categories. However, RepMet was only tested on 1989 

datasets with similar concepts (animals). Low-Shot Transfer Detec- 1990 

tor (LSTD) [277] addresses low-shot detection based on transfer 1991 

learning which transfers the knowledge form large annotated ex- 1992 

ternal datasets to the target set by knowledge regularization. LSTD 1993 

still suffers from overfitting. There is still a large room to improve 1994 

the low-shot detection tasks. 1995 

(vi) Backbone architecture for detection task. It has become a 1996 

common practice to adopt weights of classification models pre- 1997 

trained on a large scale dataset for detection. However, there still 1998 

exists conflicts between classification and detection tasks [78] , and 1999 

thus directly adopting a pretrained network may not result in the 20 0 0 

optimal solution. From Table 3 , most state-of-the-art detection al- 2001 

gorithms are based on classification backbones, and only a few of 2002 

them try different selections (such as CornerNet based on Hour- 2003 

glass Net). Thus, developing a detection-aware backbone architec- 2004 

ture is also an important research direction for the future. 2005 

(vii) Other research issues. In addition, there are some other 2006 

open research issues, such as large batch learning [278] and incre- 2007 

mental learning [279] . Batch size is a key factor in DCNN training 2008 

but has not been well studied for detection. For incremental learn- 2009 

ing, detection algorithms still suffer from catastrophic forgetting if 2010 

adapted to a new task without initial training data. These open and 2011 

fundamental research issues also deserve more attention for future 2012 

work. 2013 

In this survey, we give a comprehensive survey of recent ad- 2014 

vances in deep learning techniques for object detection tasks. The 2015 

main contents of this survey are divided into three major cate- 2016 

gories: object detector components, machine learning strategies, 2017 

real-world applications and benchmark evaluations. We have re- 2018 

viewed a large body of representative articles in recent literature, 2019 

and presented the contributions on this important topic in a struc- 2020 

tured and systematic manner. We hope this survey can give read- 2021 

ers a comprehensive understanding of object detection with deep 2022 

learning and potentially spur more research work on object detec- 2023 

tion techniques and their applications. 2024 
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