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ABSTRACT
Food image segmentation is a critical and indispensible task for
developing health-related applications such as estimating food calo-
ries and nutrients. Existing food image segmentation models are
underperforming due to two reasons: (1) there is a lack of high
quality food image datasets with fine-grained ingredient labels and
pixel-wise location masks—the existing datasets either carry coarse
ingredient labels or are small in size; and (2) the complex appear-
ance of food makes it difficult to localize and recognize ingredients
in food images, e.g., the ingredients may overlap one another in
the same image, and the identical ingredient may appear distinctly
in different food images.

In this work, we build a new food image dataset FoodSeg103 (and
its extension FoodSeg154) containing 9,490 images. We annotate
these images with 154 ingredient classes and each image has an
average of 6 ingredient labels and pixel-wise masks. In addition,
we propose a multi-modality pre-training approach called ReLeM
that explicitly equips a segmentation model with rich and semantic
food knowledge. In experiments, we use three popular semantic
segmentation methods (i.e., Dilated Convolution based [17], Fea-
ture Pyramid based [22], and Vision Transformer based [54]) as
baselines, and evaluate them as well as ReLeM on our new datasets.
We believe that the FoodSeg103 (and its extension FoodSeg154)
and the pre-trained models using ReLeM can serve as a bench-
mark to facilitate future works on fine-grained food image un-
derstanding. We make all these datasets and methods public at
https://xiongweiwu.github.io/foodseg103.html.

1 INTRODUCTION
Food computing has attracted increasing public attention in recent
years, as it provides the core technologies for food and health-
related research and applications. [2, 9, 31, 43]. One of the impor-
tant goals of food computing is to automatically recognize different
types of food and profile their nutrition and calorie values. In com-
puter vision, the relatedworks include dish classification [11, 50, 52],
recipe generation [14, 39, 46], and food image retrieval [6, 42]. Most
of them focus on representing and analysing the food image as
a whole, and do not explicitly localize or classify its individual
ingredients—the visible components in the cooked food. We call
the former food image classification and the latter food image seg-
mentation. Between the two, food image segmentation is more
complex as it aims to recognize each ingredient category as well
as its pixel-wise locations in the food image. As shown in Figure 1,
given an “hamburger” example image, a good segmentation model
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Figure 1: The first row shows a source image and its segmen-
tation masks on our FoodSeg103. The second row shows ex-
ample images to reveal the difficulties of food image segmen-
tation, e.g., the pineapples in (a) and (b) look different, while
the pineapple in (a) and the potato in (c) look quite similar.

needs to recognize and mask out “beef”, “tomato”, “lettuce”, “onion”
and “bread roll” ingredients.

Compared to semantic segmentation on general object images [3,
17, 22], food image segmentation is more challenging due to the
large diversity in food appearances and the often imbalanced distri-
bution of categories of ingredients. First, an ingredient cooked dif-
ferently can vary a lot visually, e.g., “pineapples” cooked with meat
in Figure 1 (a) versus the “pineapples” in a fruit platter in Figure 1
(b). Different ingredients may look very similar, e.g., “pineapples”
cooked with meat cannot be easily distinguished from “potatoes”
cooked with meat, as shown in Figures 1 (a) and (c) respectively.
Second, food datasets usually suffer from imbalanced distribution—
both food classes and ingredient classes often exist in long-tailed
distributions. This is inevitable due to two reasons: 1) large number
of food images are dominated by very few popular food classes
while vast majority of food classes are unpopular; and 2) there is a
selection bias in the construction of food image collection [44]. We
will elaborate the detailed distribution analysis in Section 3.

Existing food image datasets, such as ETH Food101 [1], Recipe1M
[41], and Geo-Dish [52], mainly facilitate the research of dish classi-
fication or recipe generation. They do not have fine-grained ingre-
dient masks or labels. UECFoodPix [13] and UECFoodPixComplete

https://xiongweiwu.github.io/foodseg103.html


Xiongwei Wu, Xin Fu, Ying Liu, Ee-Peng Lim, Steven C.H. Hoi, and Qianru Sun

[35] are the only two public datasets for food image segmentation.
However, their segmentation masks are annotated at dish level only.
That is, each mask covers the region of an entire dish instead of
that of food ingredients. We elaborate more dataset comparison in
Section 3.3.

Dataset contribution: To facilitate fine-grained food image seg-
mentation, we build a large-scale dataset called FoodSeg103, for
which we have defined 103 ingredient classes and annotated 7,118
western food images using these labels together with the corre-
sponding segmentation masks. Besides, we annotated an additional
set of 2,372 images of Asian food which covers more diverse set
of ingredients making these images more challenging than those
in the main set (FoodSeg103). For this set, we defined 112 ingredi-
ent classes—55% overlap with the ingredient classes of the main
set. In total, we annotated 154 classes of ingredients with around
60k masks (in the two datasets). We name the combined dataset
as FoodSeg154. During the annotation, we carried out careful data
selection, iterative refinement of labels and masks (to be further
elaborated in Section 3.2), so as to guarantee high quality labels
and masks in the dataset. Our annotation is thus expensive and
time-consuming. In experiments, we use FoodSeg103 for in-domain
training and testing, and use the additional set in FoodSeg154 for
out-domain testing.

Model contribution: The source images of FoodSeg103 are
from another existing food dataset Recipe1M [41]—millions of im-
ages and cooking recipes, used for recipe generation. Each recipe
contains not only “how to cook” but also “what ingredient to use”.
In our work, we leverage these recipe information as auxiliary
information to train semantic segmentation models. We call this
multi-modality knowledge transfer and name our training method
ReLeM. Specifically, ReLeM integrates food recipe data, in the for-
mat of language embedding, with the visual representation of the
food image. In this way, it forces the visual representation of an
ingredient appearing in different dishes to have their appearances
“connected” in the feature space through a common language em-
bedding (extracted from the ingredient’s label and its cooking in-
structions).

Experiment contribution: We validate our proposed ReLeM
model by plugging it into the state-of-the-art semantic segmenta-
tion models such as CCNet [17], Sem-FPN [22] and SeTR [54]. In
experiments, we compare ReLeM-variants with these baseline mod-
els using both convolutional networks and transformer backbones.
Our experiments show that ReLeM is generic to be applied into mul-
tiple segmentation frameworks, and it helps to achieve significant
accuracy improvement when incorporated into the SOTA CNN-
based model CCNet. This validates that our knowledge transfer
approach works more efficient on stronger models—a characteristic
preferred by the multimedia community.

Our contributions are thus three-fold. i) We build a large-scale
food image segmentation dataset called FoodSeg103 (and its ex-
tension FoodSeg154). It can facilitate a promising and challenging
benchmark for the task of semantic segmentation in food images.
ii) We propose a knowledge transfer approach ReLeM that utilizes
the multi-modality information of recipe datasets. It can be incor-
porated into different semantic segmentation methods to boost the
model performance. iii) We conduct extensive experiments that re-
veal the challenges of segmenting food on our FoodSeg103 dataset,

and validate the efficiency of our ReLeM based on multiple baseline
methods.

2 RELATEDWORKS

Food Image Datasets. In recent years, the scale of food-related
datasets has grown rapidly. For example, Bossard et al [1] built
one large-scale food dataset ETH Food101, which contains 101
classes with 1,000 images per class. Matsuda et al. [30] constructed
a Japanese food dataset UEC Food100 with 15K images in 100 dish
categories. In comparison, ISIA Food500 [34] contains nearly 400k
food images in 500 categories, which is the largest food image
recognition. In addition, there are also recipe-related datasets. Sal-
vador et al. [41] built the Recipe1M, with nearly 900k images and
1 million recipes, which is widely used in multi-modal learning
between images and recipes. Based on Recipe1M, an even larger
dataset Recipe1M+ [28] was constructed with more than 13 mil-
lions of food images. However, these datasets are mainly built to
support food recognition and recipe generation research rather
than food image segmentation, so they do not segment food images
into multiple masks and labels of ingredient . UECFoodPix [13] and
UECFoodPixComplete [35] are the only two datasets for food image
segmentation, which contains 10,000 images with more than 100
categories. Nevertheless, their annotation are limited to dish-wise
masks so they cannot be used for ingredient segmentation.

In this paper, we built FoodSeg103 dataset with 7,118 images and
more than 40k masks covering 103 food ingredients. In addition, we
have collected another image set for Asian food with 2,372 images
(for cross-domain evaluation of the models). Combining the main
set and the Asian set, we get the FoodSeg154 with nearly 10k images
and 60k ingredient masks. To our best knowledge, FoodSeg154 is
the first and the largest ingredient-level dataset for fine-grained
food image segmentation. Dataset is a key step in developing deep
learning based methods. We hope our dataset can inspire more
efforts for the task of food image segmentation.
Semantic Segmentation in Images. Deep learning based seman-
tic segmentation is a super hot topic in recent years. Fully convolu-
tional neural network (FCN) [27] is the first semantic segmentation
framework based on deep convolutional neural networks. It pre-
dicts pixel-wise masks by replacing the fully connected layers with
convolution layers and achieves a clear margin of improvement on
the model performance. Chen et al. [3] proposed DeepLab which ap-
plies dilated convolutional layers in vanilla FCN. The trained model
is more effective as the dilation mechanism enlarges the receptive
fields while maintaining a high resolution in feature maps. Chen
et al [4] proposed the DeepLab v2, which adds an ASPP module
to integrate features of different dilation rates. To further include
contextual cues, PSPNet [53] proposed a PPM module that aggre-
gates the contextual information using different-size pooling layers.
Wang et al. [48] proposed the non-local networks to encode the
relationship between each pair of pixels in the feature map. Based
on the non-local networks, CCNet [17] adopted a criss-cross at-
tention layer to significantly economize the computation costs of
calculating attentions. Most recently, vision transformer (attention-
based) [12, 45] was adapted to tackle semantic segmentation prob-
lems in [54]. recently and achieves state-of-the-art results [54]. In
this paper, we conduct extensive experiments on our dataset using
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Figure 2: Foodseg103 examples: source images (left) and annotations (right).

three representative semantic segmentation methods: CCNet [17],
FPN [22] and SeTR [54]. We also plug the proposed ReLeM into
these methods to show its general efficiency.

3 FOOD IMAGE SEGMENTATION DATASET
FoodSeg103 is a subset of FoodSeg154, and the latter includes
an additional subset of Asian food images and annotations. Some
example images and their annotations can be found in Figure 2.
In FoodSeg103, we have defined 103 ingredient categories and as-
signed these category labels as well as the segmentation masks
to 7,118 images. The images are from an existing recipe dataset
called Recipe1M [41]. For the additional subset in FoodSeg154, we
specially collect 2,372 images of Asian food which is of larger di-
versity than the Western food in FoodSeg103. We use this subset to
evaluate the domain adaptation performance of our food image seg-
mentation models.We release FoodSeg103 to facilitate public
research, but currently we cannot make the Asian food set
public due to the confidentiality of the images.

3.1 Collecting Food Images
We use FoodSeg103 as an example to elaborate the dataset construc-
tion process. We elaborate the image source, category compilation
and image selection as follows. Source:We used Recipe1M [28, 41]
as our source dataset. This dataset contains 900k images with cook-
ing instructions and ingredient labels, which are used for food
image retrieval and recipe generation tasks. Categories: First, we
counted the frequency of all ingredient categories in Recipe1M.
While there are around 1.5k ingredient categories [40], most of
them are not easy to be masked out from images. Hence, we kept
only the top 124 ingredient categories (with further refinement,
this number became 103) and assigned ingredients with the “others”
category when they do not fall under the above 124 categories.
Finally, we grouped these categories into 14 superclass categories,
e.g., “Main” (i.e., main staple) is a superclass category covering
more fine-grained categories such as “noodle” and “rice”. Images:
In each fine-grained ingredient category, we sampled Recipe1M
images based on the following two criteria: 1) the image should

contain at least two ingredients (with the same or different cate-
gories) but not more than 16 ingredients; and 2) the ingredients
should be visible in the images and easy-to-annotate. Finally, we
obtained 7,118 images to annotate masks.

3.2 Annotating Ingredient Labels and Masks
Given the above images, the next step is to annotate segmentation
masks, i.e., the polygons covering the pixel-wise locations of differ-
ent ingredients. This effort includes the mask annotation and mask
refinement steps.Annotation:We engaged a data annotation com-
pany to perform mask annotation, a laborious and painstaking job.
For each image, a human annotator first identifies the categories
of ingredients in the image, tags each ingredient with the appro-
priate category label and draws the pixel-wise mask. We asked the
annotators to ignore tiny image regions (even if it may contain
some ingredients) with area covering less than 5% of the whole
image. Refinement: After receiving all masks from the annotation
company, we further conducted an overall refinement. We followed
three refinement criteria: 1) correcting mislabeled data; 2) deleting
unpopular category labels that are assigned to less than 5 images,
and 3) merging visually similar ingredient categories, such as or-
ange and citrus. After refinement, we reduced the initial set of 125
ingredient categories to 103. Figure 5 shows some examples refined
by us. The annotation and refinement works took around one year.

We show some data examples in Figure 2. In Figure 2 (a), we
give some easy cases where the boundaries of ingredients are clear
and the image compositions are not complex. In Figure 2 (b) and
(c), we show some difficult cases with overlapped ingredient re-
gions and complex compositions in the images. Figure 3 shows the
distributions of fine-grained ingredient categories and superclass
categories. Figures 3(a) and 3(c) show partial statistics for small
subsets of categories due to page limit. The complete statistics will
be published when releasing the dataset.

3.3 Comparing with Food Image Datasets
Food ImageDatasets.We summarize the comparison results in Ta-
ble 1.We only include datasets that aremainly used for food recogni-
tion tasks. They contain images and dish-level labels, and therefore
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Figure 3: Category statistics for our FoodSeg103 dataset in (a) and (b), and the Asian food image set (i.e., the additional set in
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Figure 4: Comparison of different annotation styles for
masking food images: (a) source images, and (b) ingredient-
level annotation (ours), and (c) dish-level annotation [35].
Ingredient-level annotation contains more details.

they do not have any ingredient-level annotations. Recipe1M and
Recipe1M+ include ingredient labels for each images but not the
segmentation masks. Notably, there are two datasets for food image
segmentation: UECFoodPix [13] and UECFoodPixComplete [35].
Below, we compare these two with our datasets FoodSeg103 and
FoodSeg154 in detail.
Food Image SegmentationDatasets. UECFoodPix andUECFood-
PixComplete (UECFoodPixComp.) are two public datasets for food
image segmentation, with 10k images and 102 dish categories. De-
tailed comparison numbers are given in Table 2. We highlight three
advantages of our FoodSeg103 and FoodSeg154: 1) the number of
pixel-wise masks of FoodSeg (40k and 60k) is significantly larger
than UEC dataset (only 10k); 2) the annotation mask in UECFood-
Pix and UECFoodPixComp covers entire dish but not ingredients
(dish components), while our FoodSeg154 and FoodSeg103 have
ingredient-wise masks, which better capture the characteristic of
the food. Illustrative comparisons are given in Figure 4.

(a) Source Images

steak

citrus

(b) Before Refinement

fish

orange

(c) After Refinement

Figure 5: Examples of dataset refinement. (a) sources images
(b) before refinement (wrong or confusing labels exist), and
(c) after refinement.

In Table 2, we not only present the statistic numbers but also eval-
uate FoodSeg103, UECFoodPix and UECFoodPixComplete using
deeplabv3+ as a baseline model. The last row of the table shows that
FoodSeg103 serves as a more challenging benchmark for seman-
tic segmentation. Moreover, fine-grained ingredient annotations
in our datasets are more useful for analyzing food nutrition and
estimating calories in health-related applications.

4 FOOD IMAGE SEGMENTATION
FRAMEWORK

As shown in Figure 6, our food image segmentation framework
contains two modules. One is the recipe learning module (ReLeM)
to incorporate recipes in the form of language embedding into
the visual representation of a food image. We call this approach
multi-modality knowledge transfer. In this approach, we explicitly
force the visual representations of the same ingredient appearing
in different dishes to be “connected” in the feature space through
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Dataset Year Type #Dish #Ingr. Images
PFID [5] 2009 CLS 101 0 4,545
Food50 [18] 2010 CLS 50 0 5,000
Food85 [16] 2010 CLS 85 0 5,500
UEC Food100 [30] 2012 CLS 100 0 14,361
UEC Food256 [20] 2014 CLS 256 0 25,088
ETH Food-101 [1] 2014 CLS 101 0 101,000
UPMC Food-101 [49] 2015 CLS 101 0 90,840
Geo-Dish [52] 2015 CLS 701 0 117,504
Sushi-50 [36] 2019 CLS 50 0 3,963
FoodX-251 [19] 2019 CLS 251 0 158,846
ISIA Food-200 [33] 2019 CLS 200 0 197,323
FoodAI-756 [38] 2019 CLS 756 0 400,000
Recipe1M [41] 2017 Recipe 0 1488 1M
Recipe1M+ [28] 2019 Recipe 0 1488 14M
UECFoodPix [13] 2019 SEG 102 0 10,000
UECFoodPixComp. [35] 2020 SEG 102 0 10,000
FoodSeg103 2021 SEG 730 103 7,118
FoodSeg154 2021 SEG 730 154 9,490

Table 1: A global view of existing food image datasets. (CLS:
no recipe andmasks, Recipe: with recipe, SEG: with segmen-
tation masks )

Statistics FoodSeg103 FoodSeg154 UECFood UECFoodComp.
# Dish 730 730 102 102
# Ingr. 103 154 0 0
# images 7,118 9,490 10,000 10,000
# masks 42,097 59,773 14,011 16,060
mean image width 771 pixels 776 pixels 442 pixels 442 pixels
mean image height 647 pixels 656 pixels 349 pixels 349 pixels
mIoU@deeplabv3+ 34.2 N.A. 41.6 55.5

Table 2: Data summary and comparison with existing food
image segmentation datasets.

the common language embedding (extracted from the ingredient
label and its cooking instructions), so as to handle the high variance
of the ingredient appearing in different dishes. The other module
of our framework is the encoder-decoder based image segmentation.
Its encoder is initialized using the one trained by ReLeM, and its
decoder is randomly initialized and trained with the segmentation
masks. We next introduce the two modules in detail.

Food image segmentation can be viewed as a special type of se-
mantic segmentation [25, 54]. It is more difficult than normal image
segmentation due to: 1) the ingredient cooked with different meth-
ods can vary a lot by appearances, and 2) ingredient distribution is
inevitably long-tailed making the data very sparse for ingredients
in the long tail. Given a food image, the Segmenter identifies the
ingredient categories and also mask out the corresponding pixels
for each category (class). The common metrics for measuring Seg-
menter’s performance include mIoU (mean IoU over each class),
mACC (mean accuracy over all classes) and aAcc (over all pixels),
See Figure 7 for more details of IoU and accuracy (Acc) calculation.

Ingredients:
•1/2 cup A.1. Classic Marinade
•1 boneless beef sirloin steak
•…

Instructions:
•Pour marinade over steak in
resealable plastic bag.
•Seal bag; turn to evenly coat
steak with dressing.
•…
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Figure 6: Our food image segmentation framework consists
of two modules: Recipe Learning Module (ReLeM) and Im-
age Segmentation Module (Segmenter). For ReLeM, we en-
code the recipe information into the visual representation
of the food image. We deploy the cosine similarity to com-
pute the distance between two distinct-modality models, to-
gether with a semantic loss [41]. After training, we use the
trained encoder to initialize the encoder of the Segmenter.
The decoder of the Segmenter is trained with the segmenta-
tion masks from a random initialization.

(a) Source Image (b) Mask Prediction

True Positive (TP)

False Positive (FP)

False Negative (FN)

(c) Label Marks

Figure 7: Calculating IoU and Acc, taking the “cake”mask as
an example. IoU = ( TP

TP+FP+FN ) and Acc = ( TP
TP+FN ).

4.1 Recipe Learning Module (ReLeM)
Overview.We propose ReLeM to reduce the large intra-variance
of ingredients caused by different cooking methods mentioned in
the recipes. Specifically, our training method integrates the recipe
information into the visual representation of the corresponding
image. Assume an ingredient in two different images are cooked
in different methods. The visual representations of the ingredients
from vision encoder are denoted as 𝑣1 and 𝑣2, where 𝑣1 and 𝑣2 have
significant difference in the visual space. ReLeM aims to reduce
this difference according to its word embedding of the cooking
instructions of the two recipes 𝑟1 and 𝑟2 respectively in the language
space.

|𝜙 (𝑣1 |𝑟1) − 𝜙 (𝑣2 |𝑟2) | < |𝜙 (𝑣1) − 𝜙 (𝑣2) | (1)
where 𝜙 is the vision decoder in the Segmenter (elaborated in Sec-
tion 4.2).

Our ReLeM is optimized by using two loss terms: cosine similar-
ity loss between features, and semantic loss (distance) between the
text representation 𝑡 and the visual representation 𝑣 of the same



Xiongwei Wu, Xin Fu, Ying Liu, Ee-Peng Lim, Steven C.H. Hoi, and Qianru Sun

image:

𝐿cosine ((𝑣, 𝑡), 𝑦) =
{

1 − 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣, 𝑡) 𝑦 = 1
𝑚𝑎𝑥 (0, 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣, 𝑡) − 𝛼) 𝑦 = −1 (2)

𝐿semantic ((𝑣, 𝑡), 𝑢𝑣, 𝑢𝑡 ) = CE(𝑣,𝑢𝑣) + CE(𝑡,𝑢𝑡 ) (3)
where 𝑦 denotes whether 𝑡 and 𝑣 are from the same recipe. 𝑢𝑣 and
𝑢𝑡 denote the semantic class of 𝑢 and 𝑣 respectively, and 𝛼 is the
margin parameter, which is set to 0.1. As Recipe1M does not contain
specific semantic labels (i.e., dish names), we define 2,000 semantic
labels for it by selecting the most frequent dish names appeared in
its recipe titles.
Preprocessing. Each recipe contains ingredients and cooking in-
structions. Some preprocessing steps are required to encode ingre-
dients and instructions from raw text into the fixed length vectors
before they are fed into the text encoder. Specifically, we first ex-
tract useful ingredient and instruction texts from the raw recipe
data by removing redundant words. For each ingredient, we learn a
word2vec [32] representation using a bi-directional LSTM. As the
sequence of instructions can be long, it is difficult for LSTM to en-
code them, due to the gradient vanishing issue. Following a previous
work [41], we encode the instructions with a skip-instructions [23]
to generate the feature vectors with a fixed length.
Text Encoder. The text encoder is a general module to extract text
knowledge from ingredient labels and cooking instructions. We use
two types of text encoders: LSTM-based encoder and transformer-
based encoder. For LSTM-based, we use a bi-directional LSTM to
encode ingredient features and a LSTM to encode instruction fea-
tures. For transformer-based model, we use two light-weight trans-
formers, each of which contains 2 transformer layers with 4-head
self-attention modules.
Vision Encoder. The vision encoder used in ReLeM aims to extract
the visual knowledge from the input image, and the weights will
initialize the vision encoder in the segmenter. In this paper, two
vision encoders are used: ResNet-50 [15] based on convolutional
neural network and ViT-16/B [12] based on vision transformers.

4.2 Image Segmentation Module (Segmenter)
Our framework follows the standard paradigm of semantic segmen-
tation, where the input image is first encoded in a vision encoder,
and then goes through a vision decoder for mask prediction. The
existing segmentation models can be roughly divided into three
groups, based on the different designs of encoder and decoder: Dila-
tion based, Feature Pyramid Networks (FPN) based and Transformer
based.
Dilation based. Dilation convolution layers aim to enlarge the
receptive fields without sacrificing the resolution, as shown in
Figure 8 (a). In its decoder, only the last-layer feature maps are used
for prediction [4, 17], as shown in Figure 9 (a).
FPN based. FPN integrates feature maps in different layers by
the lateral connection. The shallow-layer image representation is
enhanced by integrating the feature maps generated in deep layers,
as shown in Figure 8 (b). In its decoder, a set of feature pyramids
are merged together followed with a mask predictor, as shown in
Figure 9 (b).
Transformer based. Transformer is based on attention, which
suits semantic segmentation tasks well—-the contextual informa-
tion is important in segmenting objects. Moreover, the receptive

fields can be enlarged via attentionmechanism [45, 54]. The transformer-
based model reshapes the image into a sequence of regions and
then encodes them by a sequence of attention modules, as shown
in Figure 8 (c). Its decoder predicts segmentation masks on the
last-layer feature maps, as shown in Figure 9(c).

In this paper, we conduct experiments using three representative
frameworks of these three types, respectively, i.e., CCNet (Dila-
tion) [17], FPN [22] and SeTR (Transformer) [54]. Note that the
encoder of Segmenter is pre-trained by our ReLeM. With LSTM and
transformer-based text encoding, we arrive at 6 different ReLeM
models, i.e., ReLeM-{ CCNet, FPN, SeTR}×({ LSTM, Transformer}).
We use the standard pixel-wise cross-entropy loss to optimize seg-
mentation models.

5 EXPERIMENTS
We conduct extensive experiments on our dataset FoodSeg103 and
implement our proposed ReLeM by incorporating three baseline
methods of semantic segmentation. Below, we first elaborate the
experimental settings and the results of an ablation study. Then, we
show the performance gaps of the top model in the typical semantic
segmentation task and our food image segmentation task. We also
evaluate the model adaptability using the Asian food data splits in
our FoodSeg154. Lastly, we provide some qualitative results of our
best segmentation models.

5.1 Implementation Details
Dataset Settings In our experiments, we use FoodSeg103 for in-
domain training and testing, and use the additional Asian food set
for out-domain testing. We randomly divide FoodSeg103 dataset
into two splits: training set and testing set, according to the 7:3 ratio.
Our training set contains 4,983 images with 29,530 ingredient masks,
while testing set contains 2,135 imageswith 12,567 ingredientmasks.
For ReLeM training, we use the training set of Recipe1M+ to learn
the recipe representations (with test images in FoodSeg103 hidden
from training).
Segmenter Settings We conduct experiments based on two types
of vision encoders: ResNet-50 [15] based on convolutional neural
networks, and ViT-16/B [12] based on vision transformer. ResNet-
50 is initialized from the pre-training model on ImageNet-1k [10],
which is widely used inmultiple vision tasks [4, 24, 37]. ViT-16/B [12]
is a transformer-based model, which is initialized from the pre-
training model on ImageNet-21k. ViT-16/B contains 12 transformer
encoders with 12-head self-attention modules. We use the bilin-
ear interpolation method to reinitialize the pre-trained positional
embedding. In this paper, we use three types of segmentors: CC-
Net [17], FPN [22] and SeTR [54]. CCNet and FPN are based on
ResNet-50, while SeTR is based on ViT-16/B. Notably, SeTR extracts
feature maps from 12th transformer encoders, followed by two
sets of convolution layers for prediction. Other components of the
segmentors follow the default settings with random initialization.
ReLeM Settings We use two types of vision encoders in ReLeM:
ResNet-50 and ViT-16/B, which follow the same setting as Seg-
menter. In text preprocessing step, we use the skip-instruction
models from the pre-trained weights in [29].
Learning Parameters of Segmenter Each image will be resized
into a fixed size of 2049 × 1024 pixels with a ratio range from 0.5
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Figure 8: Different types of encoder for food image segmentation
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Figure 9: Different types of decoder for food image segmentation

to 2.0. A 768 × 768 patch is cropped from the resized images, and
random horizontal flipping and color jitter are applied. We trained
the models with 80k iterations based on 8 images per batch, and
optimized the models by SGD solvers, with a momentum as 0.9
and weight decay as 0.0005. For CCNet and FPN, we set the initial
learning rate to 1e-3, while for SeTR we set initial learning rate to
1e-3. According to the general settings [17, 47], the learning rate
is decayed by a power of 0.9 according to the polynomial decay
schedule. For simplicity, we do not apply hard negative mining
during training, and our framework is based on the widely used
platform mmsegmentation [7]. All experiments were conducted on
4 Tesla-V100 GPU cards.
Learning Parameters of ReLeM Each input image are resized
into a size of 256 × 256 pixels and a 224 × 224 patch is cropped
from the resized images as the input of the vision encoder. The
model is trained for 720 epochs and each batch contains 160 images.
We use Adam solver [21] to optimize the models, with a learning
rate of 1e-4, Here we follow a two-stage optimization strategy. We
first freeze the weights of the vision encoder and optimize the text
encoder. After the text encoder converges, we start to train the
vision encoder and freeze the parameters of the text encoder.

5.2 Results and Observations
The experiment results of CCNet, FPN and SeTR on FoodSeg103
are shown in Table 3.

The Segmenters of all CCNet, FPN and SeTR achieve signifi-
cant improvements when incorporating with either LSTM-based or
transformer-based ReLeM (1.3%, 1.3% and 2.6% improvement). This
confirms that ReLeM is effective in enhancing both convolution
based and transformer based semantic segmentation models. Be-
sides, we can see that the performance of using LSTM-based ReLeM
is consistently superior than using transformer-based ReLeM across
all the model configurations.

Methods mIoU mAcc Model Size
CCNet [17] (ResNet-50) 35.5 45.3 381M
ReLeM-CCNet (LSTM) 36.8 47.4 381M
ReLeM-CCNet (Transformer) 36.0 46.5 381M
FPN [22] (ResNet-50) 27.8 38.2 218M
ReLeM-FPN (LSTM) 29.1 39.8 218M
ReLeM-FPN (Transformer) 28.9 39.7 218M
SeTR [54], (ViT-16/B) 41.3 52.7 723M
ReLeM-SeTR (LSTM) 43.9 57.0 723M
ReLeM-SeTR (Transformer) 43.2 55.7 723M

Table 3: Semantic segmentation results of our ReLeM
plugged into three baseline methods (on the FoodSeg103
dataset). We implement two variants of ReLeM using LSTM
and Transformer, respectively, to encode recipes.

5.3 Comparing FoodSeg103 with Cityscapes
We compare the food image segmentation task with conventional
semantic segmentation to compare the degree of difficulty of the
two types of segmentation tasks. We include three types of state-of-
the-art segmentation algorithms, CCNet, SeTR and FPN. They are
evaluated on FoodSeg103 and Cityscapes [8] datasets. Cityscapes
contains around 5,000 images captured on the streets of German
cities, and 20 types of objects as segmentation targets. As we can
see from Table 4, all baseline methods achieve satisfactory results
on Cityscapes, but suffer significant performance drops on our
FoodSeg103. This indirectly shows the greater level of difficulty in
the food image segmentation problem.
5.4 Qualitative Examples
In Figure 10, we show some qualitative results of using CCNet
and ReLeM-CCNet on the testing set of FoodSed103. The first two
rows clearly show that ReLeM-CCNet produces more accurate and
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Figure 10: Visualization results on FoodSeg103. ReLeM-CCNet can make more accurate predictions.

Methods Cityscapes FoodSeg103 gap
CCNet 79.0 35.0 34.0
Sem-FPN 74.5 27.8 46.7
SeTR 77.9 41.3 36.6

Table 4: Semantic segmentation results on Cityscape [8] and
our FoodSeg103, showing that our FoodSeg103 ismuchmore
challenging than the object image dataset for the task of se-
mantic segmentation.

Methods mIoU mAcc aAcc
CCNet 28.6 47.8 78.9
ReLeM-CCNet 29.2 47.5 79.3
CCNet-Finetune 41.3 53.8 87.7
ReLeM-CCNet-Finetune 47.1 59.5 85.5
FPN 21.9 41.7 75.5
ReLeM-FPN 22.9 42.3 77.0
FPN-Finetune 27.1 38.0 82.6
ReLeM-FPN-Finetune 30.8 40.7 78.9

Table 5: Cross-domain adaptation results. We use LSTM
based ReLeM.

detailed predictions than the vanilla CCNet, demonstrating the
effectiveness of ReLeM. In the last row, we show a failure case. It is
actually a hard example with no clear boundaries among different
ingredients.

5.5 Cross-Domain Evaluation
We conduct an out-domain model evaluation using the Asian food
data set in FoodSeg154. With the model trained on FoodSeg103,
we adapt it to the subset of FoodSeg154, the Asian food data set.
Specifically, the Asia food set is evenly divided into the training
and testing splits. We fine-tune the trained model on the training
set and then run the model on the testing data. In Table 5, we
show the performances of three models trained with the following
settings: 1) without ReLeM, 2) with ReLeM and 3) with ReLeM
and fine-tuned on the training split of the Asian food set. For the
first two settings, we only evaluate the 62 classes in Asian food set
overlapped with FoodSeg103, and for the last setting, we evaluate
112 classes (all). From the results in Table 5, we observe that using
ReLeM consistently outperforms baselines in both cases—with and
without model fine-tuning on the training split of Asian food data.

6 CONCLUSIONS
We construct a large-scale image dataset FoodSeg103 (and its exten-
sion FoodSeg154) for food image segmentation research. We use
around 10k images and annotate 60k segmentation masks in total,
covering highly diverse appearances among 154 ingredients. In
addition, we propose a multi-modality based pre-training method
ReLeM, and validate its effectiveness by incorporating three base-
line semantic segmentation methods and conducting extensive
experiments on the FoodSeg103, i.e., using the typical setting, as
well as on the FoodSeg154, i.e., using the challenging cross-domain
setting.
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APPENDIX: MORE DETAILS OF FOODSEG103
AND FOODSEG154
7.1 Statistics
Image Collection. For FoodSeg103, we first shuffle all the images
and randomly select 70% images (4983 images) as training set and
the left 30% images as testing set. For Asian Set, we randomly
sample 50% images (1186 images) for each dish class, and the left
50% are used for testing. The basic information of training and
testing set is listed in Table 6, and the more detailed statistic can
be found in Table 9. In our experiments, we use FoodSeg103 for
in-domain training and testing, and use the additional Asian set for
out-domain evaluation.
Structure of FoodSeg103 FoodSeg103 contains 103 ingredient
categories which belong to 15 super categories. In Figure 12, we
show the dataset structure of FoodSeg103, where the inner circle
plots the names of super classes, and the outer circle plots the
corresponding ingredient categories.

7.2 Visualization
Visualization of FoodSeg103. In Figure 11, we show more visu-
alization examples of the source image and its corresponding mask
annotation in FoodSeg103.

7.3 Analysis on Transformer-based Models
Vision Transformers have been intensively studied recently, and a
bunch of new algorithms have been proposed. The new proposed
vision transformers have achieved significantly better performance
than conventional CNN-based models in multiple vision tasks. In
this section, we explore the performance of applying vision trans-
formers into food image segmentation task. We adopt the vision
transformers: ViT [12], Swin [26] and PVT [47] as segmentation
encoders. We follow the default design of decoders, where FPN
is used in PVT models and UperNet [51] is used in Swin models.
For ViT models, we use the two default settings in SeTR: Naive
and MLA, as decoders. All the models are trained with the default
learning settings with 80k iterations.

The results are shown in Table 8. ReLeM-variants show con-
sistent improvement on both PVT and ViT-Naive models (0.7%
and 2.6% improvement). However, in ViT-MLA model, the baseline
shows better performance. In MLA decoder, feature maps from
different level transformer encoders are integrated for final predic-
tion. In ReLeM, however, only the last feature map is extracted for
recipe learning. We argue ReLeM can also learn strong multi-level
representation by extracting feature maps of different levels for
recipe learning, and we leave it as the future work. In addition,
larger backbones cannot guarantee improvement and may even
hurt the performances (44.5% vs 45.1% in ViT, and 41.2% vs 41.6%
in Swin). Besides, Swin achieves much better performance than
ViT in other vision tasks [26], but in food image segmentation, the
performance of Swin is much worse than ViT models, even with
more parameters. These results show that food image segmentation

task is more challenging and naively boosting the power of back-
bone cannot guarantee performance gain. Finally, decoders play
important roles in transformer-based segmenters, but few efforts
have been made to design a food-aware decoders, which is also an
important research problem in the future.

# Images # Ingredients

Datasets Train Test Total Train Test Total
FoodSeg103 4,983 2,135 7,118 29,530 12,567 42,097
Asian Set 1,186 1,186 2,372 8,795 8,881 17,676
FoodSet154 6,169 3,321 9,490 38,325 21,448 59,773

Table 6: Statistic of training and testing set for FoodSeg103,
Asian Set and FoodSeg154.

S-classes Number S-classes Number S-classes Number
Dessert 3913 Meat 4956 Soy 148
Beverage 844 Condiment 1543 Vegetable 15719
Nut 912 Seafood 920 Fungus 592
Egg 424 Soup 121 Salad 23
Fruit 6007 Main 5634 Others 341

Table 7: The ingredient number of all super classes in Food-
Seg103.

Encoder Decoder mIoU mAcc Model Size
PVT-S FPN 31.3 43.0 202M
ReLeM-PVT-S FPN 32.0 44.1 202M
ViT-16/B Naive 41.3 52.7 723M
ReLeM-ViT-16/B Naive 43.9 57.0 723M
ViT-16/B MLA 45.1 57.4 711M
ReLeM-ViT-16/B MLA 43.3 55.9 711M
ViT-16/L MLA 44.5 56.6 2.4G
Swin-S Uper 41.6 53.6 931M
Swin-B Uper 41.2 53.9 1.4G

Table 8: Semantic segmentation results of different vision
transformers. All models are trained based on the default
learning settings with 4 images per batch for 80k iterations.
“S”, “B” and “L” denote “Small”, “Base” and “Large” models
respectively.
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FoodSeg103 Asian Set FoodSeg154

Class Id Class Name Train Test Total Train Test Total
1 candy 58 43 101 0 0 101
2 egg tart 8 6 14 0 0 14
3 french fries 190 87 277 95 83 455
4 chocolate 158 59 217 0 0 217
5 biscuit 393 122 515 4 1 520
6 popcorn 37 11 48 0 0 48
7 pudding 5 1 6 0 0 6
8 ice cream 927 401 1328 48 50 1426
9 cheese butter 461 198 659 19 14 692
10 cake 535 213 748 0 0 748
11 wine 117 50 167 15 19 201
12 milkshake 107 32 139 0 0 139
13 coffee 136 62 198 8 12 218
14 juice 157 64 221 71 72 364
15 milk 48 36 84 5 4 93
16 tea 29 6 35 15 6 56
17 almond 268 74 342 0 0 342
18 red beans 46 27 73 0 0 73
19 cashew 44 43 87 0 0 87
20 dried cranberries 79 55 134 0 0 134
21 soy 41 18 59 0 0 59
22 walnut 100 81 181 0 0 181
23 peanut 16 20 36 93 95 224
24 egg 321 103 424 162 161 747
25 apple 195 80 275 29 49 353
26 date 14 3 17 51 43 111
27 apricot 39 18 57 0 0 57
28 avocado 104 35 139 9 19 167
29 banana 160 101 261 0 0 261
30 strawberry 745 391 1136 3 4 1143
31 cherry 474 140 614 0 0 614
32 blueberry 559 218 777 0 0 777
33 raspberry 108 59 167 0 0 167
34 mango 80 25 105 0 0 105
35 olives 98 44 142 0 0 142
36 peach 137 29 166 0 0 166
37 lemon 609 263 872 106 99 1077
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FoodSeg103 Asian Set FoodSeg154

Class Id Class Name Train Test Total Train Test Total
38 pear 55 21 76 0 0 76
39 fig 51 9 60 0 0 60
40 pineapple 205 81 286 32 37 355
41 grape 189 48 237 0 0 237
42 kiwi 69 21 90 0 0 90
43 melon 44 7 51 0 0 51
44 orange 283 110 393 54 48 495
45 watermelon 68 18 86 0 0 86
46 steak 987 483 1470 0 0 1470
47 pork 646 261 907 0 0 907
48 chicken duck 1160 508 1668 0 0 1668
49 sausage 372 93 465 32 34 531
50 fried meat 209 118 327 0 0 327
51 lamb 85 34 119 0 0 119
52 sauce 1124 419 1543 19 15 1577
53 crab 19 11 30 38 37 105
54 fish 348 138 486 103 126 715
55 shellfish 77 27 104 37 40 181
56 shrimp 211 89 300 51 54 405
57 soup 92 29 121 0 0 121
58 bread 1698 738 2436 49 40 2525
59 corn 411 170 581 29 35 645
60 hamburg 7 1 8 0 0 8
61 pizza 83 22 105 0 0 105
62 hanamaki baozi 22 14 36 0 0 36
63 wonton dumplings 10 10 20 165 149 334
64 pasta 171 59 230 18 3 251
65 noodles 337 140 477 811 836 2124
66 rice 655 277 932 294 306 1532
67 pie 563 246 809 20 17 846
68 tofu 111 37 148 73 57 278
69 eggplant 34 9 43 38 12 93
70 potato 1041 400 1441 110 111 1662
71 garlic 143 29 172 40 36 248
72 cauliflower 237 100 337 43 32 412
73 tomato 1404 687 2091 124 100 2315
74 kelp 4 5 9 0 0 9
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FoodSeg103 Asian Set FoodSeg154

Class Id Class Name Train Test Total Train Test Total
75 seaweed 16 10 26 29 29 84
76 spring onion 285 113 398 556 561 1515
77 rape 59 23 82 360 429 871
78 ginger 25 12 37 24 34 95
79 okra 35 9 44 31 18 93
80 lettuce 748 338 1086 245 230 1561
81 pumpkin 114 25 139 0 0 139
82 cucumber 568 267 835 234 203 1272
83 white radish 56 34 90 63 52 205
84 carrot 1407 670 2077 156 143 2376
85 asparagus 325 139 464 24 23 511
86 bamboo shoots 8 7 15 0 0 15
87 broccoli 966 427 1393 35 49 1477
88 celery stick 233 91 324 36 35 395
89 cilantro mint 1045 466 1511 323 320 2154
90 snow peas 103 49 152 6 16 174
91 cabbage 139 39 178 25 13 216
92 bean sprouts 35 20 55 34 34 123
93 onion 732 304 1036 85 103 1224
94 pepper 552 242 794 189 191 1174
95 green beans 237 125 362 40 37 439
96 French beans 360 168 528 39 34 601
97 king oyster mushroom 12 3 15 0 0 15
98 shiitake 185 106 291 167 205 663
99 enoki mushroom 9 5 14 25 31 70
100 oyster mushroom 11 4 15 0 0 15
101 white button mushroom 195 62 257 35 26 318
102 salad 12 11 23 0 0 23
103 other ingredients 230 111 341 667 738 1746
104 water 0 0 0 2 4 6
105 goji berry 0 0 0 33 50 83
106 ribs 0 0 0 148 135 283
107 tripe 0 0 0 31 36 67
108 meat slices 0 0 0 135 170 305
109 minced meat 0 0 0 95 69 164
110 pork belly 0 0 0 87 76 163
111 pork intestine 0 0 0 16 16 32
112 pork skin 0 0 0 33 15 48
113 blood 0 0 0 4 4 8
114 pork liver 0 0 0 26 16 42
115 shredded pork 0 0 0 25 34 59
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FoodSeg103 Asian Set FoodSeg154

Class Id Class Name Train Test Total Train Test Total
116 chicken legs/duck legs 0 0 0 65 62 127
117 meat skewers 0 0 0 48 51 99
118 chicken feet 0 0 0 32 33 65
119 barbecued pork 0 0 0 125 102 227
120 beef ball 0 0 0 81 60 141
121 poultry meat 0 0 0 235 234 469
122 barbecued pork sauce 0 0 0 69 73 142
123 caviar 0 0 0 24 22 46
124 curry sauce 0 0 0 0 11 11
125 satay sauce 0 0 0 36 45 81
126 chili sauce 0 0 0 99 95 194
127 ketchup 0 0 0 35 21 56
128 salad sauce 0 0 0 16 20 36
129 basil sauce 0 0 0 30 25 55
130 garlic sauce 0 0 0 8 8 16
131 cuttlefish 0 0 0 4 3 7
132 squid 0 0 0 32 31 63
133 fish cakes 0 0 0 78 100 178
134 fish Ball 0 0 0 220 205 425
135 fish tofu 0 0 0 27 26 53
136 fried fish 0 0 0 76 66 142
137 small dried fish 0 0 0 73 71 144
138 yut yiao 0 0 0 46 56 102
139 porridge 0 0 0 36 55 91
140 fried banana leaves 0 0 0 23 32 55
141 rice cake 0 0 0 16 14 30
142 yuba 0 0 0 27 29 56
143 fried tofu 0 0 0 11 24 35
144 beancurd puff 0 0 0 26 33 59
145 preserved vegetable 0 0 0 7 17 24
146 salted vegetables 0 0 0 32 25 57
147 pea seedlings 0 0 0 13 15 28
148 kai lan 0 0 0 6 11 17
149 lotus root 0 0 0 26 26 52
150 amaranth 0 0 0 23 16 39
151 millet spicy 0 0 0 64 65 129
152 bitter gourd 0 0 0 16 17 33
153 daylily 0 0 0 1 5 6
154 agaric 0 0 0 33 42 75

- Summary 29530 12567 42097 8795 8881 59773
Table 9: Statistic of ingredients per class for FoodSeg103, Asian set and FoodSeg154.
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Figure 11: More annotation examples of FoodSeg103. The source images are in the left hand, while the annotation masks are
in the right hand.



Xiongwei Wu, Xin Fu, Ying Liu, Ee-Peng Lim, Steven C.H. Hoi, and Qianru Sun

Figure 12: The dataset structure of FoodSeg103. The inner circle plots the super classes and the outer circle plots the corre-
sponding sub-classes.
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